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EXECUTIVE SUMMARY 

Over the past decade, the frequency and intensity of natural disasters have increased, causing 

significant disruptions to transportation systems.  The disruptions to transportation systems 

directly affect humanitarian activities during a disaster and may cause cascading impacts on 

other infrastructures and associated industries. Therefore, quick restoration and recovery of 

transportation systems play an important role in humanitarian operations and community 

recovery. However, how to prepare for and respond to transportation system disruptions is a 

complex decision incorporating a variety of factors, from system use to system preparation.  

In our CATM project, we searched and reviewed papers published from 2007-2017 

that focus on air and road transportation system management and decision-making during 

disaster preparedness and response phases. From the published papers and government 

reports, we identified and classified emergency response actions and/or policies in air and 

road transportation systems. During a natural disaster, major emergency response activities in 

air transportation systems are flight cancellation and rescheduling, crew rescheduling, and 

airport asset relocation and protection. Major response activities in road transportation 

systems are highway contra-flow control and barricade for evacuation and humanitarian 

relief delivery, closure of transportation assets such as bridges, and restoration of blocked or 

damaged roads.  

To support some of these emergency response activities, we developed optimization 

models to address a flight rescheduling problem during a severe weather disruption and 

network optimization models for road restoration problems after a hurricane. These 

optimization models were integrated as a decision-making tool to support the restoration of 

air and road transportation systems after a natural disaster such as a hurricane. Meanwhile, 

we collected the data of North Carolina (NC) emergency response activities, air flights, and 

road closures during Hurricane Matthew. Using Hurricane Matthew data, we conducted a 

vulnerability analysis of the southeastern NC highways to a hurricane. Hurricane Matthew 

data collected were also used to test the optimization models and the decision-making tool 

developed in this project. The testing results showed that it took less than 5 minutes for the 

integrated decision-making tool to find optimal sets and sequences of road restoration and 

flight schedules recovery at the airport and 50 counties of North Carolina affected by 
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Hurricane Matthew. The integrated tool can also support decision making of transportation 

system restoration by visualizing the damaged connections between counties, airports and 

humanitarian resource centers, and the road restoration schedule and flight schedules 

recovery plan. 

The optimization models and decision-making tools developed in this project will 

improve the effectiveness and efficiency of response activities in local and regional 

transportation systems during a natural disaster, such as a hurricane. Deploying effective 

response activities can improve the mobility of people and disaster relief during and after a 

natural disaster. The results of this project have been published as three peer-reviewed 

conference papers and presented as posters and oral presentations at national professional 

conferences and regional transportation conferences and symposiums. One more paper has 

been submitted to the 2020 TRB Annual Meeting. In addition, three graduate students 

(including two African American students and one female student) and two undergraduate 

students (including one African American student and one female student) have been 

involved in this CATM project. The participation of these students can contribute to the 

diversity of US transportation workforce in the future. 
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DESCRIPTION OF PROBLEM 

Natural disasters, such as hurricanes, winter storms, and floods, usually cause significant 

disruptions to transportation systems. These disruptions directly affect humanitarian activities 

during a disaster and may cause cascading impacts on other infrastructures and associated 

industries. During Hurricane Matthew, for example, more than 600 roads in North Carolina 

(NC) were closed due to severe flooding caused by the hurricane, and some of them were 

closed for more than ten days [1]. The closures of southeastern NC roads caused delays and 

embargoes on cargo movements in the southeastern North Carolina, and complicated 

emergency relief delivery in the affected areas [2]. Similar effects were experienced in Texas 

and Louisiana due to Hurricane Harvey, and in Florida, Georgia and South Carolina due to 

Hurricane Irma [3]. For example, highways I-45, I-10, I-69 & I-610 were halted in Texas and 

Louisiana due to Hurricane Harvey, causing loss of billions of dollars [4]. Therefore, quick 

restoration and recovery of transportation systems play an important role in humanitarian 

operations and community recovery. 

How to prepare for and respond to a disruption in transportation systems is a complex 

and challenging decision incorporating a variety of factors, from system use to system 

preparation. To address the emergency response challenges in transportation systems, in this 

CATM project, we aimed to (1) develop decision-making models for emergency response 

activities in different transportation modes, and (2) to integrate these models as a decision-

making tool to support response activities in multi-mode transportation systems during an 

emergency event. The research questions of our CATM project are: 

 What are the possible emergency-response actions/policies in different 

transportation modes? 

 How can optimization models support decision making when planning for and 

responding to disruptions in transportation systems? 

 How can emergency response optimization models for different transportation 

modes be integrated into a decision-making tool to support emergency 

response activities in multi-mode transportation systems? 

These research questions were investigated at two interdependent scales – at the local scale 

of individual transportation modes (e.g., air transportation and road transportation) and at a 

network level. 
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METHODOLOGY AND RESULTS 

In this CATM project, we conducted five studies addressing the restoration problems in air or 

road transportation systems after a natural disaster. Before we conducted these studies, we 

searched for papers published from 2007-2017 that focus on disaster management and 

decision making of air and road transportation systems during disaster preparedness and 

response phases. We found and reviewed about 50 relevant papers for road transportation and 

about 40 relevant papers for air transportation. From the published papers and government 

reports, we identified and classified emergency response actions and policies in air and road 

transportation systems. Based on our literature review, we also identified the research gap in 

disaster management and decision making of air and road transportation systems during 

disaster preparedness and response phases. To bridge the research gap, we defined and 

conducted the five studies in this project. The methodology and results of these studies are 

described in detail in the following subsections.  

Study 1 – Vulnerability Assessment of the Southeastern NC Highway Transportation 

System to a Hurricane 

On average, a major hurricane affects North Carolina once in two years [5] and causes 

significant disruptions to NC transportation systems. During Hurricane Matthew, for 

example, more than 600 roads in North Carolina were closed due to severe flooding caused 

by associated storm surge and heavy rain [1]. The closures of southeastern NC roads caused 

delays and embargoes on cargo movements in southeastern North Carolina, and complicated 

emergency relief delivery in the affected area [2]. Therefore, it is imperative to assess the 

vulnerability of a transportation system to natural hazards in preparing for an emergency 

response to the hazards and mitigating their negative impacts. However, to our best 

knowledge, no study or project has assessed the vulnerability of the NC highway 

transportation system to hurricanes or tropical storms. To bridge this gap, in this study, we 

used the FHWA’s vulnerability assessment framework [6] as a guide to assess the 

vulnerability of the southeastern NC highway transportation system to a hurricane. 
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Figure 1: FHWA’s Climate Change and Extreme Weather Vulnerability Assessment 

Framework [6] 

Figure 1 illustrates the FHWA’s vulnerability assessment framework used in the 

study. The framework was proposed by the USDOT Federal Highway Administration 

(FHWA) in 2012 for assessing transportation system vulnerability to climate change and 

extreme weather events [6]. The FHWA’s framework consists of three steps: (1) defining the 

scope of a project, (2) assessing vulnerability, and (3) integrating vulnerability into decision 

making.  
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For Step 1 of the FHWA’s framework, we selected the assets used to assess the 

vulnerability of the southeastern NC transportation system and defined the metrics to 

evaluate the vulnerability of the selected assets to a hurricane. The southeastern NC 

highways that were closed due to Hurricane Matthew were selected as the assets of the 

transportation system of interest because of the importance of highways in a transportation 

system. Figure 2 shows the two interstate highways and the 15 US highways that were closed 

due to damages or flooding caused by Hurricane Matthew. Six metrics were chosen to assess 

the vulnerability of the selected assets to a hurricane. The six metrics measure the exposure, 

sensitivity and adoptive capacity of the selected assets to two major characteristics of a 

hurricane (wind speed and precipitation). For wind, the exposure metric is observed peak 

wind speed at relevant southeastern NC locations during Hurricane Matthew, and the 

sensitivity metric is past experience with wind. For precipitation, the exposure metrics used 

in the study are observed peak flood level and observed total rainfall at relevant southeastern 

NC locations during Hurricane Matthew, and the sensitivity metric is past experience with 

flood level for Hurricane Matthew. The annual average daily traffic (AADT) is used as a 

metric for adaptive capacity. Table 1 provides the rationales of the six metrics selected for 

exposure, sensitivity, and adaptive capacity. 

Figure 2: Number of Closure Days of NC Highways during Hurricane Matthew 

Table 1: Vulnerability Metrics and Corresponding Data Sources 
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Description and Rationale Data Sources 
Exposure Metrics 
Observed peak Observed peak wind speeds at a location can NOAA storm 
wind speed provide a proxy for how likely an asset at the data for North 

location was exposed to wind. Carolina 
Observed peak Observed peak flood level at a location can provide USGS Flood 
flood level the proxy for how likely an asset at the location was Event Viewer 

exposed to a flood caused by precipitation. 
Observed total Observed total rainfall at a location can provide the NOAA storm 
rainfall proxy for how likely an asset at the location was data for North 

exposed to precipitation. Carolina 
Sensitivity Metrics 
Past experience 
with wind 

Past experience with wind speed for a specific 
event. This data implies that the assets which are 
affected by this level of wind speed are more likely 
vulnerable. 

NC 
Department 
of Safety’s 
WebEOC 

Past experience 
with flood level 

Past experience with flood level for a specific event. 
This data indicated that the assets which are 

database 

affected by this level of flood level are more likely 
vulnerable. 

Adaptive Capacity Metrics 
Average annual AADT is the volume of vehicle traffic of a road for NCDOT GIS 
daily traffic a year divided by 365 days. Roadways with higher 
(AADT) traffic volumes would affect more drivers/traffic 

and cause a greater disruption if damaged. 

For Step 2 of the FHWA’s framework, the data needed for the vulnerability 

assessment was collected from multiple sources and then used to analyze the vulnerability 

using the USDOT vulnerability assessment scoring tool (VAST) [7]. By searching for 

potential sources, we found data for our vulnerability study from the USGS Flood Event 

Viewer, NOAA storm data for North Carolina, North Carolina Department of Transportation 

(NCDOT) Geographical Information System (GIS) analysis and North Carolina Department 

of Safety WebEOC database. Table 1 lists the data sources for each vulnerability metric. For 

each southeastern NC highway studied, the observed values of peak wind speed and total 

rainfall during Hurricane Matthew were retrieved from NOAA storm data for North 

Carolina, and the observed values of peak flood level were obtained using the USGS Flood 

Event Viewer. NC Department of Transportation provides the average annual daily traffic 

(AADT) for NC highways, which is the metric for adaptive capacity. 
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The collected data were first converted to vulnerability scores for individual assets 

using the VAST. The VAST is an Excel-based tool to calculate metric-based vulnerability 

scores in terms of the three vulnerability components (exposure, sensitivity, and adaptive 

capacity). The VAST vulnerability scores range from 1 to 4, 1 representing low vulnerability 

and 4 representing high vulnerability. Based on the scoring scales given for each metric, the 

VAST first converts observed values for an asset to its metric-level vulnerability scores and 

then calculates weighted averages of metric-level vulnerability scores to obtain the 

component-level vulnerability scores of the asset. Finally, the tool calculates the overall 

vulnerability score of an asset by averaging its three component-level vulnerability scores. 

Table 2 summarizes the scoring scales used to convert observed data to metric-level 

vulnerability scores. The scoring scales for the exposure and adaptive capacity metrics are 

the default values in the VAST, which are determined by equally dividing the overall range 

of all values for a metric. The sensitivity scoring scale for past experience with wind is 

determined based on National Hurricane Center’s Saffir-Simpson Hurricane wind scale [8], 

and the sensitivity scoring scale for flood level is chosen based on the analysis of flood level 

and damage reports for Hurricane Matthew from WebEOC database [1]. In the study, we 

chose equal weights to calculate the component-level and overall vulnerability scores.  

Table 2: Scoring Scales Used for the Exposure, Sensitivity and Adaptive Capacity Metrics 

Exposure Sensitivity Adaptive 
Vulnerability Peak wind Peak flood Total rainfall Wind past Flood level past capacity 

score speed (mph) level (ft) (inch) experience (mph) experience (ft) (AADT) 
1 45 – 50.5 16.6 – 27.18 10 – 12 39 -73 2 – 10 300 – 12225 
2 50.5 – 56 27.18 – 37.75 12 – 14 73 – 95 10 – 18 12225 – 24150 
3 56 – 61.5 37.5 – 48.33 14 – 16 95 – 110 18 – 26 24150 – 36075 
4 61.5 – 67 48.33 – 58.9 16 – 18 110 – 200 26 – 60 36075 – 48000 

Figure 3 shows the vulnerability scores of all highways selected. A highway with 

higher vulnerability score is more vulnerable to a hurricane. The figure shows the variation in 

exposure, sensitivity and adaptive vulnerability scores which are caused by the varying 

exposure levels to wind and precipitation, and different traffic volumes. The comparison of 

the exposure vulnerability scores and the closure days of the selected highways reveals that 

the number of closure days is positively correlated with the exposure vulnerability scores. 

The result also shows highways with higher traffic volume, such as I-95, I-40, US-64, and 
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US-701, usually have high overall vulnerability scores because damages or disruptions of a 

highway with high traffic volume affect more commuters and business operations, and result 

in a higher adaptive capacity vulnerability scores. 

Figure 3: Vulnerability Scores for the Southeastern NC Highways [9] 

Study 2 – Decision Making for Road Network Restoration after a Natural Disaster 

Natural disasters, such as hurricanes and floods, usually damage or block roads and hence 

disrupt road transportation networks. Road network disruptions impede accessibility to 

disaster victims, medical facilities, and supply locations during the first few days after a 

disaster, and affect commuters’ travel and the transportation industry during the road 

recovery period. Due to the importance of road restoration after natural disasters, many 

studies in the literature have addressed the road restoration problems after natural disasters 

[10-30]. Most of these studies focus on road restoration scheduling in the short term (the first 

few days) or a long term (the recovery period) after a disaster [11-30]. However, to our best 

knowledge, no study has addressed the road restoration problem in both short term and long 

term. To bridge this gap, this study addresses the road restoration problems, including 

resource allocation and restoration scheduling, in both the short term and the long term after 

a natural disaster such as hurricane. The objectives of this study are (1) to develop an 

integrated decision-making approach for road restoration in the short and long terms after a 

natural disaster, (2) to examine which road segments in the eastern NC transportation system 

Multi‐Scale Models for Transporation Systems under Emergency 9 



 

               

 

 

 

 

 

 

are more critical for short term or long term road restoration after a hurricane, and (3) to 

investigate what factors may affect optimal road restoration schedules.  

In this study, we proposed an integrated decision-making approach, in which the short 

term road restoration (STRR) and long term road recovery (LTRR) problems are solved 

hierarchically. Figure 4 illustrates the optimization models used in the approach and the input 

and output for each model. For the STRR problem, a minimum spanning tree (MST) model 

is built to identify the critical roads to be restored to reconnect the road network with 

minimum restoration time. Then the maximum flow and resource allocation (MFRA) model 

is formulated to allocate the available resource to the critical roads identified by the MST 

model in order to maximize the accessibility to disaster victims. For the detail of the MFRA 

model, we refer to our recent publication [31]. For the LTRR problem, the critical roads have 

been restored, and the road network is connected. Thus, the connected network is given to the 

multi-period resource allocation (MPRA) model. The MPRA model allocates the available 

resource to recover all the damaged roads in the network with objective of minimizing the 

affected annual average daily traffic (AADT). The detail of the MPRA model is included in 

Appendix A. 

Figure 4: An Integrated Decision-Making Approach for Road Restoration and Recovery  

after a Natural Disaster 

We tested the proposed integrated decision-making approach on the eastern North 

Carolina road transportation network affected by Hurricane Matthew. Figure 5 shows the 
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eastern North Carolina road transportation network, in which the nodes denote the counties, 

and the edges represent the roadways linking counties. This road network consists of 50 

nodes and 118 links. In the network, solid lines represent undamaged links, whereas dash 

lines represent damaged links during Hurricane Matthew. In our study, a damaged link 

between two nodes is defined as the link with capacity that cannot meet the need of 

humanitarian logistics after a disaster. In addition, the nodes with red and black circles are 

unreachable and reachable, respectively, from resource nodes. In our study, we considered a 

single resource node, i.e., node 46, and the other nodes as demand nodes. The node 46 is 

assigned as resource node since North Carolina state emergency operations center is located 

at this node. 

Figure 5: Eastern North Carolina Road Transportation Network 

In our study, we tested the proposed decision-making approach in the scenarios 

representing even and uneven distributions of damage. The even distribution of damage 

represents the flood damage scenarios caused by heavy rain during a hurricane. On the other 

hand, the uneven distribution of damage represents the damage variation ranging from high 
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for the coastal region to low for the inland region, which is usually caused by high-speed 

wind of a hurricane. The regions of edges depend on the distance of edges from the coast. In 

this study, edges within 60 miles from the coast are considered as coastal edges, edges 

between 61 to 120 miles from the coast as middle edges, and edges above 120 miles from the 

coast as inland edges. Figure 5 illustrates the three regions with different colors: blue for 

coastal edges, green for middle edges and orange for inland edges.  

Nine scenarios are designed for the even and uneven damage distributions, 

respectively, by combining three levels of road damage percentage and three levels of road 

restoration workload distribution. A constant daily road restoration capacity of 1664 

(unit×hours) is assumed for all scenarios in the numerical study, which is estimated based on 

208 contractor crews available for road restoration at North Carolina mentioned in FMEA’s 

hurricane Florence report [32]. 

For the nine scenarios of even damage distribution, the three levels of road damage 

percentage are 30%, 50% and 70%, which approximately correspond to the percentages of 

damaged roads by hurricane Irene (2011), Hurricane Matthew (2016) and Hurricane Florence 

(2018), respectively. For the restoration workload distribution, we estimated the middle-level 

workload (MWL) based on the daily restoration capacity and the damage scenario of 

hurricane Matthew, in which about 50% of the edges (67 out of 118 edges) were damaged 

and it took 25 days to restore those damaged edges. For the scenarios of middle-level 

workload, restoration workload of each damaged edge is assumed being normally distributed 

with mean of 620 (unit×hours) and standard deviation of 50. We increase and decrease the 

mean value for middle-level workload by 20% to get the higher-level workload (HWL) and 

lower-level workload (LWL), respectively. The standard deviation for workload distribution 

is also increased or decreased correspondingly.  

For the nine scenarios of uneven damage distribution, one level of road damage 

percentage consists of three road damage percentages for the three regions (coastal, middle 

and inland) of roads. The three levels of road damage percentage for the even damage 

scenarios are assigned for middle edges. The levels of road damage percentage for coastal 

edges and inland edges increase and decrease by 10%, respectively. Thus, the three levels of 

road damage percentage for the uneven damage scenarios are (20%, 30%, 40%), (40%, 50%, 
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60%) and (60%, 70%, 80%). In these scenarios, coastal edges are assigned the highest 

damage percentage as the roads in the coastal region are exposed to more severe wind. The 

damage percentage for inland edges decreases due to the decrease in its wind speed after a 

hurricane landfall. For the same reason, the mean values of the restoration workload 

distributions increase by 20% for coastal edges and decrease by 20% for inland edges.  

In our study, three cases were randomly generated for each scenario based on the road 

damage percentage and the road restoration workload distribution of the scenario, and then 

were solved using the integrated decision-making approach proposed. Figure 6 represents the 

numbers of damaged links to be restored for the uneven and even damage scenarios. Figure 

6(a) shows the numbers of damaged links to be restored to connect all the demand node, i.e., 

restoring the connectivity of the network. Figure 6(b) illustrates the number of remaining 

damaged links to restore the entire network in the long term recovery period. The results 

indicate that in both short term restoration and long term recovery periods, the number of 

damaged links required to repair depends only on the percentage of roads damaged, but 

neither on-road damage distribution nor on restoration workload level. Further, it is cleared 

from the results that if the damage percentage is high to the road network, more links must be 

restored to reconnect the entire road network. Therefore, to reconnect the entire network for 

humanitarian operations, emergency management services have sought help from the other 

agencies or states. Furthermore, agencies need to preposition the restoration resources 

strategically to aid the restoration activities immediately after the disaster.  

Figure 7 represents the days required to connect the network and restore all damaged 

links for the uneven and even damage scenarios. Figure 7(a) shows the days required to 

connect the network as early as possible to aid humanitarian activities in the short term 

restoration period. Figure 7(b) illustrates the days required to restore the entire network in the 

long term recovery period. In both the short term and the long term, we assume that enough 

restoration resource and time for road restoration operations. In both the terms, the figure 

shows that the road restoration days required for all scenarios depends on the road damage 

percentage and restoration workload level. Importantly, the results indicate that the damage 

distribution does not affect the time of restoration. Therefore, emergency management 

services need to decide the restoration activities irrespective of the nature of the damage 
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distribution. In other words, regardless of the damage caused by wind gust or flood due to a 

hurricane, the best network recovery schedule depends on the amount of damaged road and 

damage severity caused by the disaster. 

(a) Short Term Road Restoration (b) Long Term Road Recovery 

Figure 6: Number of Links Required to Reconnect and Restore the Damaged Network 

(a) Short Term Road Restoration (b) Long Term Road Recovery 

Figure 7: Days Required to Reconnect and Restore the Damaged Network 

Figure 8 represents the percentage of each edge’s occurrences in short term road 

restoration (STRR) schedules for both uneven and even damage distribution scenarios. The 

result shows that for both types of scenarios, the restoration schedule includes a similar group 

of edges in the STRR schedule. This indicates that some group of edges in the road network, 
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e.g., edges (6,13) and (6,37), are essential due to the topology of the network. In other words, 

the edges (6,13) and (6,37) whenever damage, they must be scheduled to restore in the short 

term road restoration period to reconnect the road network. Further, these results provide the 

strategic location for prepositioning restoration resources close to the important edges 

depicted in Figure 8. 

(a) For the Uneven Damage Scenarios                                (b) For the Even Damage Scenarios 

Figure 8: Percentage of Edge Occurrences in short term road restoration schedules  

Figures 9(a) and 9(b) represent the average ranking of edges in long term road 

recovery schedules for both uneven and even damage distribution scenarios, respectively. 

The results show that the average ranking of edges does not affect by the damage 

distribution. Also, the rank of the edges in the network is related to the traffic volume in 

terms of annual average daily traffic (AADT) and the restoration workload. In other words, 

edges with high rank are scheduled to restore early in order to minimize the affected traffic. 

Further, the results depict that edges with high rank are distributed evenly throughout the 

network. This indicates that for long term road recovery, the restoration resource can be 

located at the center to minimize the distance from all the edges. 
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(a) For the Uneven Damage Scenarios                               (b) For the Even Damage Scenarios 

Figure 9: Average Ranking in Percentage of Edges in the Uneven and Even Damage 

Scenarios 

In summary, we developed the three optimization models for an integrated decision-

making approach that addresses the problems of short term road restoration and long term 

road recovery after a natural disaster. The approach and optimization models have been 

tested in the 18 road damage scenarios, which were designed by considering even or uneven 

damage distribution, road damage percentage and restoration workload. The findings 

revealed that the number of links required to reconnect and restore the damaged network 

depends only on the road damage percentage, while the time to reconnect and restore the 

damaged network depends on the road damage percentage and restoration workload levels. 

Using the integrated approach proposed in this study, one could estimate the amount of 

aggregate restoration resource required for a damaged road network after a natural disaster. 

The output from the model could support decision making related to road restoration during a 

disaster. The results of this study have been submitted to the 2020 TRB Annual Meeting for 

presentation and publication. 
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Study 3 – Visualizing the Impact of a Severe Weather Disruption to an Air 

Transportation Network 

Air Transportation is most commonly controlled and monitored by a sophisticated, 

coordinated route management system known as a hub and spoke network model [33]. 

Passengers start at a hub (departure airport) and are transported along the spoke to a 

destination airport (arrival airport). A representation of the hub and spoke network at an 

airport hub is shown in Figure 10. 

Figure 10: Representation of Hub and Spoke Network 

The restoration of airline operations during a severe weather disruption involves the 

analysis and interpretation of large volumes of flight and weather data. Large datasets, or Big 

Data, are structured or unstructured datasets that are too large or complex to be analyzed by 

traditional data-processing applications. In Air Transportation, these large datasets typically 

contain pertinent airline and flight information based on time intervals [34]. 

The principal goal of the visualizations analysis is to introduce a decision support tool 

to interpret and collate large volumes (Big Data) of time-dependent flight and weather data. 

The visualizations serve as a comprehensive interface for airline stakeholders to assist them 

with collating, viewing and comprehending the Big Data. Flight and weather data from 

Hurricane Matthew 2016 are used to generate the visualizations. 

There are many prior research studies dedicated to visualizing Big Data. A literature 

review of the state-of-the-art articles related to Big Data for airline flights and weather 

conditions were performed. The articles were classified based on the type of Big Data 
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visualized in the article, the details of the data, the methodology used to create the image, the 

intended audience to interpret and receive the visualizations, and the decisions that audience 

must address. Table 3 summarizes the classification of the Big Data visualized in the related 

articles. 

Table 3: Classification of Big Data Visualized in the Related Literature 

Type of Big Data 
Visualized Data Details Methodology Intended Audience 

Audience 
Decisions 

Airlines (35%) 

Real‐time, time‐

dependent flight and 
weather data 

Statistical analysis using 
programming software 

Pilots, air traffic 
controllers, airline 
stakeholders Airline recovery 

Hurricanes (35%) 
Time‐dependent 
weather data 

Statistical analysis using 
programming software 

Pilots, air traffic 
controllers, airline 
stakeholders, NASA Airline recovery 

General Big Data (17%) 
Time‐dependent 
network data 

Statistical analysis using 
programming software Scientists, engineers 

Disruption 
management 

Severe Weather (13%) 
Time‐dependent 
weather data 

Statistical analysis using 
programming software Scientists, engineers Airline recovery 

The research uses two types of Big Data datasets, flight and weather data, obtained 

from four sources, The Official Aviation Guide (OAG), Weather Underground, the US 

Department of Transportation’s Bureau of Transportation Statistics National Aviation 

System (BTS NAS) and Iowa State University’s Environmental Mesonet. The data covers 

the timeframe from September 1, 2016, through October 31, 2016. It includes the landfall 

period (September 28, 2016 through October 9, 2016) for the severe weather disruption, 

Hurricane Matthew. 

To inform the decisions that Air Transportation officials are faced with, we visualize 

specific flight and weather variables. The flight variables are a day, time and carrier for the 

scheduled flights and the number of cancellations. The time-dependent weather variables are 

visibility levels, wind speed and hurricane landfall path. The visualizations are interpreted for 

traffic flow (flow-in and flow-out), capacity constraints and connectivity to the hub to 

influence decisions regarding airline recovery following a severe weather disruption. 

Figure 11 shows the total flow of all airline carriers arriving and departing DCA, 

MCO, ORF and RDU between September 1, 2016 and October 31, 2016. The left side of 

Figure 7 illustrates the total traffic flow out of the hub and the right side of the figure displays 
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the total traffic flow into the hub. These airport hubs are chosen because they are coastal 

airports, (MCO and ORF), and in-land airports, (DCA and RDU), that are in the path of 

Hurricane Matthew 2016. The effects of Hurricane Mathew are most significant at MCO which 

is visible by the noticeable break in the graph (shown in the circle), indicating that there were 

no outgoing or incoming flights during October 6-7, 2016. MCO closed on October 6-7, 

2016 as Hurricane Matthew made landfall on the Florida coastline. Flights resumed on 

October 8, 2016 indicating there was at least a 24-hour delay for MCO to return to their pre-

hurricane traffic levels and travelers were delayed for at least 24-hours. 

Figure 11: Total Traffic Flow at DCA, MCO, ORF and RDU 

Figure 12 also shows a comparison of the percent of arrivals at inland (DCA and 

RDU) and coastal (MCO and ORF) airport hubs. The graphs of the inland hubs show flights 

arrived on October 7, 2016. These airports may not have received the full potency of the 

hurricane weather conditions and could continue to allow flights to arrive. When Hurricane 

Matthew reached North Carolina (RDU), it was a Category 1 Hurricane that decreased in 

intensity to a Post Tropical Cyclone by the time it reached Washington DC (DCA). Although 

the weather conditions are strong, the inland hubs are able to maintain operations. 
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Figure 12: Traffic Flow In to DCA, MCO, ORF and RDU 

Figure 13 shows the cancelled flights scheduled to arrive at DCA, MCO, ORF and 

RDU during the period of study. There are negligible or zero cancelled arrivals at the four 

airport hubs during September 2016, indicating that there are no capacity constraints or flight 

route connectivity issues to consider. However, October 2016 shows a high concentration of 

cancellations between October 6-9, 2016. 

Figure 13: Cancelled Arrivals (Flow In) [35] 
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The visualizations show that organizing the data to display the traffic flow at a hub 

and cancellations in the airport network, provides an enhanced understanding of the data, 

improves the understanding and clarity of the data and assists with recovery decisions to 

manage capacity constraints and traffic flow following a severe weather event. The 

visualizations and results are corroborated by interviews with Air transportation officials 

tasked with decision-making for recovery operations following a severe weather event. The 

Air transportation officials concur that our analysis is relevant to decision-making and 

consistent with current practices. 

Study 4 – A Deterministic Optimization Model of Flight Schedules Recovery 

When unexpected disruptions to normal operations occur, Air transportation officials are 

faced with what is commonly known as the airline recovery problem [36]. The airline 

recovery problem is essentially the process of determining how to respond to an unexpected 

interruption to service or operations. Decision-makers must develop recovery actions for five 

basic components of air traffic management: Airport Operations, Aircraft Dispositioning, 

Flight Schedules, Crew Assignment and Passenger Itineraries [37]. 

The objective of this research is to develop an optimization model for the recovery of 

Flight Schedules following a severe weather disruption. We conduct a state of the airline 

network assessment and define a discretized recovery window. We develop a mixed integer 

linear programming (MILP) model that generates new flight schedules, minimizes delays and 

circumvents a severe weather event caused by a hurricane. 

The literature review is conducted comprehensively, for all components of the airline 

recovery problem, then filtered specifically for Flight Schedules recovery. The literature is 

categorized by the component of the airline recovery problem studied in the article. The 

related literature involving the recovery of Flight Schedules is analyzed by type of disruption, 

author’s approach to the problem, type of data used in the analysis and how the results will 

be used. Table 4 diagrams the classification of the Flight Schedules recovery in the related 

literature and highlights the focus of our research, shown in red. 
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Table 4: Classification of Flight Schedules Recovery Literature 

Disruption Approach Data Results For 

Author 
Severe 
Weather 

Capacity 
Constraints 

Combined 
Disrupts Case Study Simulation Optimization Theoretical Actual Planning Recovery Both 

Abdelghany, 2008 X X X X 

Abdi, 2008 X X X X 

Castro, 2010 X X X X 

Churchill ,  2010 X X X X 

Eggenberg, 2010 X X X X 

Filar,  2007 X X X X 

Hu, 2017 X X X X 

Janic, 2015 X X X X 

Jozefowiez, 2012 X X X X 

Marla, 2017 X X X X 

McCrea, 2008 X X X X 

Sun, 2011 X X X X 

Tu, 2008 X X X X 

Zhang, 2008 X X X X 

Zhang, 2017 X X X X 

Glass, Davis, Qu 
2019 X X X X 

This study extends the work of Study 3 and examines the impact of a severe weather 

event, i.e. hurricane, on flight schedules at a US hub airport. We consider a daily operational 

approach for the airline recovery problem by establishing a 24-hour recovery horizon and 30-

minute, discretized time slots for flight rescheduling. A state of the network assessment is 

conducted to determine whether the flight route between the hub and destination airport is 

safe to travel. We develop a deterministic mixed integer linear programming (MILP) 

optimization model to generate new flight schedules and minimize delays. The new flight 

schedules are generated in 30-minute intervals using first-in-first-out (FIFO) flight schedule 

assignment. The model is tested with time-dependent data. The deterministic MILP 

optimization model is shown below. 

Sets 

F = set of flights, f ∈ F 

R = set of routes, r ∈ R 

T = set of time slots, t ∈ T; td = dummy slot, td ∈ T; T= t  td 

Parameters 

rft = ቊ
1	if	route	for	flight	݂	is	safe	to 	travel	in	time	slot	ݐ

  (1)  
0																																																														 otherwise 

osf = original slot in which flight f is scheduled (2) 
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pdf = prior delay time for flight f (3) 

Decision Variables 

yft = ቊ
1	if	flight	݂ is	assigned	to	time	slot	ݐ

      (4)  
0																																															otherwise 

Objective 

30 * (t – osf) * yft + pdf       (5)  min ∑௙ ∈	୊ ∑௧ ∈	୘	 

s.t. 

∑௙ ∈	୊	 yft ≤ 1 ∀ t ∈ T       (6)  

yft ≤ rft ∀ f ∈ F        (7)  

∑௧ ∈	୘	  yft = 1 ∀ f ∈ F        (8)  

yft ∈ [0,1] ∀ f ∈ F, ∀ t ∈ T       (9)  

The set of flights, F, contains the flight information for 4 airport hubs for the period 

of study. The flight information used in this study is scheduled departure date, carrier name, 

flight number, departure airport, number of flight cancellations and number of seats on the 

carrier. The set of flight routes, R, contains the state of the network assessment which 

identifies when the route, rft, for a flight f is safe to travel in a time slot t. The set of time 

slots, T, contains the 30-minute intervals in which a flight can be scheduled. There are 34 

time slots, t, in which a flight can be rescheduled. Slot number 35, td, is a dummy slot used 

when a flight cannot be rescheduled within the 24-hour recovery horizon. 

Equation (1) is the binary condition for whether the route for flight f is safe to travel 

in time slot t and is represented by rft. If Equation (1) equals 0, new flight schedules cannot 

be developed because the flight route for flight f is not safe to travel at time t. The original 

time slot, osf, in which flight f is scheduled is shown in Equation (2). The prior delay time, 

pdf, for a flight f is shown in Equation (3). In the first iteration of the model the prior delay, 

pdf, is 0. However, if the first run generates schedules in slot number 35, the prior delay, pdf, 

is the prior calculated delay time for that flight f and is added to the subsequent iteration of 

the model. The decision variable, yft, shown in Equation (4), is a binary condition for whether 

a flight f is assigned to time slot t. If Equation (4) equals 0, new flight schedules cannot be 

defined. 
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The objective function (5) determines the total delay time across all rescheduled 

flights given that the time slots are in 30-minute intervals. The constraints of the model are 

defined in Equations (6 – 8).  Constraints (6) ensure at most one flight f is scheduled in a time 

slot t. Constraints (7) ensure that a flight is scheduled to a route that is safe to travel. 

Constraints (8) enforce that a flight is scheduled to one time slot. It should be noted that we 

include a dummy time slot for all flight routes that is always safe for travel. This ensures that 

all flights will either be rescheduled during the current time-window, or rescheduled in the 

next time-window. The candidate flights selected for the next time-window are the set of 

flights scheduled in the dummy time slot. Constraints (9) represent the binary conditions on 

the decision variable. 

The model is developed to generate new flight schedules in 30-minute intervals for 

cancelled flights due to a severe weather event. It is coded using Python programming 

language and tested in a testing scenario. This scenario assumes one airline carrier (American 

Airlines), one-day schedules for three cancelled flights and uses flight data generated based 

on the recurring daily schedules of American Airlines carriers. The data contains the carrier 

number, proposed departure day and time, the number of seats on the aircraft and the original 

time slot of the scheduled departure. Actual weather data for two days in October 2016 are 

used to assess whether the route is safe to travel. The route is safe to travel when the 

visibility level is greater than 5-miles and the windspeed is less than 33 knots. Our initial 

results show that the model can schedule some cancelled flights to time slots during which 

the routes are safe to travel, and the remaining flights will be postponed to the next time-

window (i.e., next day). 

Study 5 – Integrated Decision Making for the Restoration of Air and Road 

Transportation Systems after a Natural Disaster 

Quick restoration and recovery of transportation systems play an important role in 

humanitarian operations and community recovery after a natural disaster. To support the 

restoration of transportation systems, we created a visual decision-making tool for the 

restoration of air and road transportation systems after a natural disaster and tested it in a case 

study using the impact data of Hurricane Matthew in North Carolina. Figure 14 illustrates the 
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recovery process of air and road transportation operations after a natural disaster and the role 

of the proposed visual decision-making tool in the recovery process. To facilitate effective 

decision making during a natural disaster, the decision-making tool proposed for multimodal 

transportation system restoration integrates the flight rescheduling models and the short-term 

highway restoration models developed in this CATM project.  

Figure 14: Recovery Process of Air and Road Transportation Operations  

after a Natural Disaster  

The disruption of natural disasters to air transportation is mainly due to flights 

cancellation, and the disruption to road transportation is because of damaged or blocked 

roadways. In the decision-making tool, first, the flight rescheduling models summarize the 

numbers of passengers in the canceled flights who need to travel from each county to the 

airport and send the information to the short-term highway restoration models. After 

receiving this information, the highways restoration models take road restoration workload, 

available restoration resource, the population distribution in the affected area, and the 

numbers of airline passengers affected an input to generate an optimal set of damaged or 

blocked roads to be restored within the first three days and the sequence of restoring the 

selected roads. Based on the optimal road restoration schedule, the short-term highways 

restoration models summarize the accessibility from each county to the airport and send the 

information to the flight rescheduling models. This is the initial iteration of the decision-
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making tool. After the initial iteration, the flight rescheduling models and the highway 

restoration models are iteratively solved until optimal solutions for flight rescheduling and 

road restoration converge. In each iteration, the flight rescheduling models reschedule the 

canceled flights by considering the airport condition for flights and the accessibility from 

each county to the airport. Then based on an optimal new schedule of canceled flights, the 

flight rescheduling models summarize the numbers of airline passengers who need to travel 

by road from each county to the airport on each day, and then send the information to the 

highway restoration models. Based on the updated need of airline passengers, the highway 

restoration models update the optimal road restoration sequence, and then send to the flight 

rescheduling models the updated accessibility from each county to the airport.  

In our case study, we tested the decision-making tool for transportation system 

restoration using the impact data of Hurricane Matthew in North Carolina (NC), including 

the data of NC emergency response activities and road closures during Hurricane Matthew 

from WebEOC database [1], flights cancellation during Hurricane Matthew from OAG 

Figure 15: Road Restoration Sequence in the Eastern North Carolina  

for the Hurricane Matthew Scenario 
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Table 5: Index, Name, and Population of the Counties Affected by Hurricane Matthew  

Node Index County Name Population Node Index County Name Population 
1 Anson 25,275 27 Lee 49,040 
2 Beaufort 44,958 28 Lenoir 59,648 
3 Bertie 19,773 29 Martin 25,593 
4 Bladen 32,278 30 Montgomery 26,822 
5 Brunswick 73,143 31 Moore 74,769 
6 Camden 6,885 32 Nash 87,420 
7 Carteret 59,383 33 New Hanover 160,307 
8 Chatham 49,329 34 Northampton 22,086 
9 Chowan 14,526 35 Onslow 150,355 

10 Columbus 54,749 36 Pamlico 12,934 
11 Craven 91,436 37 Pasquotank 34,897 
12 Cumberland 302,963 38 Pender 41,082 
13 Currituck 18,190 39 Perquimans 11,368 
14 Dare 29,967 40 Pitt 133,798 
15 Duplin 49,063 41 Richmond 46,564 
16 Edgecombe 55,606 42 Robeson 123,339 
17 Franklin 47,260 43 Sampson 60,161 
18 Gates 10,516 44 Scotland 35,998 
19 Greene 18,974 45 Tyrrell 4,149 
20 Halifax 57,370 46 Wake 627,846 
21 Harnett 91,025 47 Warren 19,972 
22 Hertford 22,601 48 Washington 13,723 
23 Hoke 33,646 49 Wayne 113,329 
24 Hyde 5,826 50 Wilson 73,814 
25 Johnston 121,965 51 RDU Airport 1,000 
26 Jones 10,381 

Aviation worldwide Ltd [38], and the NC county population from US census data 2010 [39]. 

Figure 15 shows the eastern NC road transportation network affected by Hurricane Matthew, 

in which the nodes denote the counties, and the edges represent the roadways linking 

counties. This road network consists of 51 nodes and 118 links. Node 51 represents the 

airport in the affected area, and node 46 indicates the location of road restoration resource. 

The nodes with green background indicate the counties from which some airline passengers 

need to travel by road to the airport. In the network, solid lines represent undamaged links, 

whereas dash lines represent damaged links during Hurricane Matthew. Table 5 displays the 

population of the 50 NC counties affected by Hurricane Matthew.  
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Figure 15 also shows the optimal road restoration schedule to reconnect the 50 

counties and the airport. The set of damaged links to be restored is highlighted in green in the 

graph, and the numbers associated with each highlighted link indicate the restoration 

sequence of these roads. Corresponding to the road restoration schedule, Table 6 shows the 

recovery time by which airline passengers can travel by road from a county to the airport. 

Figure 16 shows the flight rescheduling results. This figure reveals that more than 65% 

passengers and flights can be rescheduled within 24 hours, and all canceled flights can be 

rescheduled within about 48 hours. 

Table 6: Passengers and Restoration Time for the Path from Counties to the Airport  

Node Index County Name 
Number of Passengers from 
the County to the Airport 

Restoration time  
(in Hours) 

43 Sampson 428 0 
2 Beaufort 120 8 
14 Dare 206 8 
20 Halifax 556 8 
34 Northampton 174 8 
36 Pamlico 112 8 
12 Cumberland 1947 16 
13 Currituck 127 28 
23 Hoke 240 28 
7 Carteret 636 52 
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Figure 16: Percentages of Passengers and Flights Rescheduled after the Hurricane 
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In the decision-making tool for multimodal transportation system restoration was 

implemented using Python. The computational time of decision making for road restoration 

and flight schedules recovery in the case study was within 5 minutes. This tool can also 

visualize the damaged connections between counties, counties disconnected from airports 

and regional coordinate centers, and the road restoration schedule and flight schedules 

recovery. 

Multi‐Scale Models for Transporation Systems under Emergency 29 



 

               

 

 

FINDINGS, CONCLUSIONS, RECOMMENDATIONS 

In our CATM project, we (1) assessed the vulnerability of the southeastern NC highways to a 

hurricane using the impact data of Hurricane Matthew; (2) investigated the patterns of flight 

cancellations and delays caused by a severe weather disruption using visualization; (3) 

developed and tested a decision-making approach for road restoration in the short and long 

terms after a natural disaster; (4) developed an optimization model for flight schedules 

recovery after a severe weather disruptions; (5) integrated the flight rescheduling models and 

the short-term highway restoration models to create a decision-making tool for multimodal 

transportation system restoration after a natural disaster, and tested the decision-making tool 

in a case study. Our vulnerability analysis results revealed the positive correlation between 

exposure vulnerability scores and the closure days of southeastern NC highways during 

Hurricane Matthew and also showed that the highways with higher traffic volume are more 

vulnerable. 

Our visualization study has demonstrated that the Tableau software successfully 

visualized the flight and weather activity during the period of study, and it can be used to 

develop a dashboard that shows the real-time impact of severe weather disruption. Our 

results have shown that visualizations can be used to forecast and predict airport flow, flight 

cancellations and departure delays and that the total traffics before, during and after a 

hurricane disruption can provide insights and trends to help decision-makers manage the 

flight schedules recovery problem. 

The optimization models, approaches and tools developed in this project can support 

decision making for the restoration of air and road transportation systems after a natural 

disaster. These models, approaches or tools can estimate the amount of aggregate restoration 

resource required for a damaged road network after a natural disaster, identify an optimal set 

and order of damaged or blocked roads to quickly reconnect critical locations, generate an 

optimal plan to recover a damaged road network, and optimize the new schedules of 

cancelled flights. The outputs of these models or tools could improve the effectiveness and 

efficiency of response activities in local and regional transportation systems during a natural 

disaster. Deploying effective response activities can improve the mobility of people and 

disaster relief during and after a natural disaster. 
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APPENDIX A: Multi-Period Resource Allocation (MPRA) Model 

In the study of the road network restoration after a natural disaster, we address the short term 

road restoration and long term road recovery problems after a natural disaster. In the short 

term road restoration problem, the critical roads are identified and their restoration sequence 

is decided to reconnect the damaged road network within the shortest time. In the long term 

road recovery (LTRR) problem, the critical roads have been restored and the road network is 

connected. The remaining damaged road must be restored with minimal impact in daily 

traffic flow. Thus, the objective of the LTRR problem is to minimize the impact of road 

recovery activities on daily traffic. In this study, road reconstruction is not considered in the 

LTRR problem. Only road restoration activities such as road repair and debris clearance are 

considered in the LTRR problem. That means that no new edge can be added to the graph. 

The LTRR problem is defined on a weighted undirected graph G = (V, E) 

representing the damaged road network. In the graph, nodes (V) represent critical locations, 

and edges (E) denote damaged and undamaged links among critical locations. Each edge is 

associated with two weights: restoration workload and annual average daily traffic (AADT). 

The restoration workload weight of a damaged edge represents the aggregated workload, in 

units of repair/clearance team times time, required to restore the damaged edge (i.e., 

corresponding main damaged road). The restoration workload weights of all undamaged 

edges equal 0. 

For the LTRR problem, the road recovery period is divided into multiple time 

intervals. In this study, the LTRR problem is formulated as a MILP model, called the MPRA 

model, that allocates available aggregated restoration resource to the unrestored edges of the 

graph over the road recovery period. The objective of the MPRA problem is minimizing the 

affected AADT associated with edge, i.e., affected traffic volume on the road, as early as 

possible. From the disaster management respective, road usability can be measured by the 

total time, and the amount of vehicle traverse the edge. Thus, the LTRR problem is 

formulated as:  

Minimize ∑ ∑∀ሺ௜,௝ሻ∈ாವ
಺಺ 

௧
௝ሻ (10)∀௧ ݒ௜௝ሺ1 െ ߛ௜, 

Subjected to ߛ௜௝
௧ ൒	ߛ௜௝

௧ିଵ ∀ሺ݅, ݆ ሻ ∈ ஽ܧ
ூூ, ݐ  ∈  ܶ  (11) 
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௧ିଵ ൅ ,௜ݕ
௧ ௧ ሻ ∈ ஽ܧ

ூூ,௜ܻ,௝ ௝ ൌ	 ௜ܻ,௝ ∀ሺ݅, ݐ ݆  ∈  ܶ  (12) 

௜,௝ݓ െ ௜ܻ,
௧
௝ ൑ ൫1 െ ,௜ߛ

௧
௝൯ݓ௜,௝, ∀ሺ݅, ݆ሻ ∈ ஽ܧ

ூூ, ݐ ∈ ܶ  (13) 

௜,௝ݓ െ ௜ܻ,
௧
௝ ൒ 1 െ ,௜ߛ

௧
௝, ∀ሺ݅, ݆ሻ ∈ ஽ܧ

ூூ, ݐ ∈ ܶ  (14) 

௧∑ሺ௜,௝ሻ∈ாವ
಺಺ ݕ௜,௝ ൑ ,௧ݎ ݐ∀  ∈  ܶ  (15) 

௧
௜ܻ,
௧
௝, ݆ , ∀ሺ݅					௜,௝ ൒ 0,ݕ ሻ ∈ ஽ܧ

ூூ, ݐ  ∈  ܶ  (16) 

௜௝ߛ
௧ ∈ ሼ0,1ሽ ∀ሺ݅, ݆ ሻ ∈ ஽ܧ

ூூ, ݐ  ∈  ܶ  (17) 

Table 7: Notation for the MPRA Model 

Sets 
E Set of edges of the network

஽ܧ
ூூ Set of damaged edges in the recovery period 

V Set of nodes of the network 
T Set of time intervals of the recovery period  
Indices 
i and j Indices for nodes 
t Index for time intervals 
Parameters 
rt The aggregate amount of restoration resources in time interval t 

Amount of workload for a damaged edge, i.e., restoration resources needed to 
wij fully restore edge
 ௜௝ Affected AADT on the edge(i, j)ݒ

Decision Variables 
yij

t Amount of restoration resources allocated to the edge (i, j) in time interval t 

The total amount of restoration resources allocated to the edge (i, j) by the endtYij of time interval t 

=൜
1,			if	edge	ሺ݅,	݆ሻ		is	fully	restored	at	the	end	of	time	interval	ߛ ݐ௜௝

௧ 

0,		otherwise																																																		 

Table 7 displays the notation for the sets, indices, parameters, and decision variables 

used in the MPRA models. In the MPRA model, the objective function (10) minimizes the 

total affected AADT, i.e., the total number of vehicles that could traverse the damaged edges 

over the time intervals. Constraints (11) ensure that any restored edge can be traversed once it 

is restored. Constraints (12) track the cumulative amounts of restoration resource allocated to 
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each damaged edge by the end of each time interval. Constraints (13) and (14) determine 

whether enough restoration resource has been allocated to each damaged edge to restore it by 

the end of each time interval. Constraints (15) ensure that the total amount of restoration 

resource allocated does not exceed the total available resource in each time interval. 

Constraints (16) and (17) are non-negativity and binary restrictions for decision variables.  
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APPENDIX B: Codes for Air Rescheduling and Road Restoration Models 

B.1 MST.py 

""" 
Created on Wed Jan 16 10:33:38 2019 
@author: Sachin Mhatre 
""" 

# A Python program for Prim's Minimum Spanning Tree (MST) algorithm.  
# The program is for adjacency matrix representation of the graph  

import sys # Library for INT_MAX  
import numpy as np 

class Graph(): 

    def __init__(self, vertices):  
self.V = vertices 

        self.graph = [[-1 for column in range(vertices)]   
        for row in range(vertices)]  

    # A utility function to print the constructed MST stored in parent[]  
    def printMST(self, parent):  

print ("Edge \tWeight") 
        for i in range(1,self.V):  
            print (parent[i],"-",i,"\t",self.graph[i][ parent[i] ])  

    # A utility function to find the vertex with   
    # minimum distance value, from the set of vertices   
    # not yet included in shortest path tree  
    def minKey(self, key, mstSet):  

        # Initilaize min value  
        min = sys.maxsize  

        for v in range(self.V): 
            if key[v] < min and mstSet[v] == False:  

min = key[v] 
min_index = v 
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        return min_index

    # Function to construct and print MST for a graph   
    # represented using adjacency matrix representation  

def primMST(self): 

        #Key values used to pick minimum weight edge in cut  
        key = [sys.maxsize] * self.V
        parent = [None] * self.V # Array to store constructed MST  
        # Make key 0 so that this vertex is picked as first vertex  
        key[0] = 0  
        mstSet = [False] * self.V  

        parent[0] = -1 # First node is always the root of  

        for cout in range(self.V):  
            # Pick the minimum distance vertex from   
            # the set of vertices not yet processed.   
            # u is always equal to src in first iteration  

u = self.minKey(key, mstSet) 

            # Put the minimum distance vertex in   
            # the shortest path tree  

  mstSet[u] = True 

            # Update dist value of the adjacent vertices   
            # of the picked vertex only if the current   
            # distance is greater than new distance and  
            # the vertex in not in the shotest path tree  
            for v in range(self.V):  

# graph[u][v] is non zero only for adjacent vertices of m  
# mstSet[v] is false for vertices not yet included in MST  
# Update the key only if graph[u][v] is smaller than key[v]  

  if self.graph[u][v] >= 0 and mstSet[v] == False and key[v] > self.graph[u][v]:  
           key[v] = self.graph[u][v]  

parent[v] = u 
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        self.printMST(parent) 
return parent 

def STRREdges (numNodes, edgeFileName): 
        allEdges = np.genfromtxt(edgeFileName, dtype='int', delimiter=',') 

edgeList = allEdges.tolist() 

g = Graph(numNodes) 
for edge in edgeList: 

             g.graph[edge[0]-1][edge[1]-1]=edge[3] 
             g.graph[edge[1]-1][edge[0]-1]= edge[3] 

mst = g.primMST()
        for i in range(1,g.V): 
            if g.graph[i][mst[i]] > 0: 

for j in range(0,len(edgeList)): 
     if (i==(edgeList[j][0]-1) and mst[i]==(edgeList[j][1]-1)) or 

(i==(edgeList[j][1]-1) and mst[i]==(edgeList[j][0]-1)): 
edgeList[j][2] = 1 
break

 return edgeList 

B.2 STRR.py 

""" 
Created on Sun Aug 25 18:41:40 2019 
@author: Sachin Mhatre 
""" 

from docplex.mp.model import Model 
from docplex.mp.context import Context 

''' 
#Function to solve the STRR model 
Function of STRR (SourceNodes, DemandNodes, NodeWeights, Edgelist,  
          DmgEdge, TimePeriods,AffectedPopulation, EdgeWorkload,  
          AirportNode = 51, TimeIntervals = 4,ResCapacity = 200) 
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Parameters 
    SourceNodes - List of source node indices (Positive integers)  
    DemandNodes - List of demand node indices (Positive integers) 
    NodeWeight - Dictionary of node indices, names and weights (population) 
    Edgelist – List of undamaged edges and damaged edges to restore 

Dmg Edge – List of damaged edges to be restored 
    TimePeriods – List of time periods indices (positive integers starting 1) 
    AffectedPopulation – Population associated with each pair of source and demand 

nodes in each time Period 
    ResCapacity – Constant restoration resources available 
    AirportNode – Node index for the airport 
    EdgeWorkload – List of workload to restore each edge  
    TimeInterval - Number of hours for each interval 

Returns 
listRestorationSequence 
dictRoadResSequence 
dictResTime_County 
dictResAllocation 

''' 
def STRR (SourceNodes, DemandNodes, NodeWeights, Edgelist, DmgEdge, 
          TimePeriods,AffectedPopulation, EdgeWorkload,  
          AirportNode = 51, TimeIntervals = 4,ResCapacity = 200): 

    mq= Model(name="STRR") 

#Decision variables 
#flow from i to j 
    f = {(e[0],e[1],t) : mq.continuous_var(name = "f_e{0}_{1}_t{2}".format(e[0],e[1],t))  

      for e in Edgelist for t in TimePeriods} 
for e in Edgelist: 

        for t in TimePeriods: 
            f[(e[1],e[0],t)] = mq.continuous_var(name = "f_e{0}_{1}_t{2}".format(e[1],e[0],t)) 

#path from demand to source node 
z = {(d,s,t) : mq.binary_var(name = "z_d{0}_s{1}_t{2}".format(d,s,t))  

    for s in SourceNodes for d in DemandNodes for t in TimePeriods} 
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#gamma in the model 
    g = {(e,t) : mq.binary_var(name = "g_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t))  
    for e in DmgEdge for t in TimePeriods}  

# Y cumulative resource allocated 
YC = {(e,t) : mq.continuous_var(name = 

"YC_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t))  
    for e in DmgEdge for t in TimePeriods} 

# small y in model 
    y = {(e,t) : mq.continuous_var(name = "y_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t)) 

for e in DmgEdge for t in TimePeriods} 

#objective function 
    mq.maximize(mq.sum(AffectedPopulation.get((d,s,t),0)* z[d,s,t] for d in 

DemandNodes for s in SourceNodes for t in TimePeriods)) 

#Constraints to guarantee no flow on any damaged edge        
for e in DmgEdge:

       for t in TimePeriods: 
           mq.add_constraint(100*g[e,t] >= f[e[0],e[1],t]) 
           mq.add_constraint(100*g[e,t] >= f[e[1],e[0],t]) 

           if t > 1: 
   mq.add_constraint(g[e,t] >= g[e,t-1])  

#Constraints to detect any path from each resource node to each demand node 
#Flow balance constraints for each source node 
    for s in SourceNodes: 

DNodes = set() 
for e in Edgelist: 

if e[0] == s: 
 DNodes = DNodes.union({e[1]}) 

if e[1] == s: 
 DNodes = DNodes.union({e[0]}) 

        for t in TimePeriods: 
             mq.add_constraint(mq.sum(z[d,s,t] for d in DemandNodes) 

+ mq.sum(f[k,s,t] for k in DNodes) == mq.sum (f[s,l,t] for l in DNodes))  
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#Flow balance constraints for demand node 
for d in DemandNodes: 

DNodes = set() 
for e in Edgelist: 

if e[0] == d: 
 DNodes = DNodes.union({e[1]}) 

if e[1] == d: 
                DNodes = DNodes.union({e[0]})     
        for t in TimePeriods: 
            mq.add_constraint(mq.sum(f[k,d,t] for k in DNodes ) 
        == mq.sum(z[d,s,t] for s in SourceNodes) + mq.sum(f[d,l,t] for l in DNodes)) 

#workload 
for e in DmgEdge:

        for t in TimePeriods: 
            # w1
            mq.add_constraint(YC[e,t] >= EdgeWorkload.get(e,0) * g[e,t]) 
            # w2
            mq.add_constraint(EdgeWorkload.get(e,0) - YC[e,t] >= 1 - g[e,t]) 

#Clearance Cumulative 
if t == 1: 

                mq.add_constraint(YC[e,t] == y[e,t]) 
            else: 

  mq.add_constraint(YC[e,t] == YC[e,t-1] + y[e,t]) 

    for t in TimePeriods: 
        mq.add_constraint(mq.sum(y[e,t] for e in DmgEdge) <= ResCapacity) 

# Connectivity at the last time period 

for d in DemandNodes: 
        for s in SourceNodes: 

 t = TimePeriods[-1] 
            mq.add_constraint(z[d,s,t] == 1 ) 

# Constraints of z(t) >= z(t-1) 
for d in DemandNodes: 
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        for s in SourceNodes: 
for t in TimePeriods: 

if t == 1: 
continue 

      else: 
      mq.add_constraint(z[d,s,t] >= z[d,s,t-1] ) 

#solution 
sol = mq.solve() 
if sol is None:

        print('Not enough resource for road restoration in the given period') 
return None 

# Solution Export 
# Road restoration sequence based on gamma in the model 

dictRoadResSequence = {} 
listRestorationSequence = [] 

# Resource allocation (smalll y in model) 
dictResAllocation = {} 
for e in DmgEdge:

        for t in TimePeriods: 
            nameRoad = "g_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t) 
            var = int(mq.get_var_by_name(nameRoad).solution_value)
            if (var > 0) and (dictRoadResSequence.get(e) == None): 

 dictRoadResSequence[e] = t 
listRestorationSequence.append([t,e]) 

            nameResource = "y_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t) 
var = round(mq.get_var_by_name(nameResource).solution_value) 

  if var > 0: 
dictResAllocation[(e,t)] = var 

listRestorationSequence.sort() 

dictResSchedule_County = {} 
dictResTime_County = {} 
s = AirportNode 
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 for d in DemandNodes: 
        for key, value in NodeWeights.items(): 

if int(key[0]) == d: 
d_name = key[1] 

                break 

        for t in TimePeriods: 
                name = "z_d{0}_s{1}_t{2}".format(d,s,t)

   var = int(mq.get_var_by_name(name).solution_value) 
    dictResSchedule_County[(key[0],t)] = var 

    if (t == 1): 
if (var == 1): 

ResTime = 0
 preVar = 1 

else: 
preVar = 0 

      else: 
if (preVar != var): 

          ResTime = t*int(TimeIntervals) 
preVar = var 

        dictResTime_County[d_name] = ResTime 

    return listRestorationSequence, dictRoadResSequence, dictResTime_County, 
dictResAllocation 

#Function for InitSTRR 
def initSTRR (TimePeriods, SourceNodes, DemandNodes, edgeList,  
              CountynPopulation,dictPop_CountytoAirport): 

Edgelist = [] 
EdgeMST = [] 
EdgeWorkload ={} 

for edge in edgeList: 
        EdgeWorkload[(edge[0],edge[1])] = edge[3] 

if edge[2]<2: 
            Edgelist.append((edge[0],edge[1])) 
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 if edge[2]==1: 
            EdgeMST.append((edge[0],edge[1])) 

    AffectedPopulation = {}

    for key, value in CountynPopulation.items(): 
        for key1, value1 in dictPop_CountytoAirport.items(): 

for t in TimePeriods: 
  AffectedPopulation[(int(key[0]),46,t)] = int(value) 

if key1 == key[1]: 
     AffectedPopulation[(int(key[0]),51,t)] = int(value1) 

# Call the STRR function 
    initSol = STRR(SourceNodes, DemandNodes, CountynPopulation, Edgelist,  

   EdgeMST, TimePeriods, AffectedPopulation, EdgeWorkload) 

    return initSol 

def iterSTRR(TimePeriods, SourceNodes, DemandNodes, edgeList,  
             CountynPopulation, dictDailyPop_CountytoAirport,settings): 

Edgelist = [] 
EdgeMST = [] 
EdgeWorkload ={} 

for edge in edgeList: 
        EdgeWorkload[(edge[0],edge[1])] = edge[3] 

if edge[2]<2: 
            Edgelist.append((edge[0],edge[1])) 

if edge[2]==1: 
            EdgeMST.append((edge[0],edge[1])) 

    AffectedPopulation = {}
    numIntervals = int(settings['numTimePeriods']/settings['numDays']) 

    for key, value in AffectedPopulation.items(): 
        for t in TimePeriods: 
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            AffectedPopulation[(int(key[0]),46,t)] = int(settings['weightRCC']*value)     

        for key1, value1 in dictDailyPop_CountytoAirport.items(): 
if key1[0] == key[1]: 

for t in range(numIntervals): 
       t1 = (key1[1]-1)*numIntervals+t+1 
      AffectedPopulation[(int(key[0]),51,t1)] = 

int(settings['weightAirport']*value1) 

    #call STRR 
    iterSol = STRR(SourceNodes, DemandNodes, CountynPopulation,  

   Edgelist,EdgeMST, TimePeriods,AffectedPopulation,EdgeWorkload) 

    return iterSol 

B.3 AIR.py 

""" 
Created on Mon Aug  5 15:16:46 2019 
@author: lbdavis 
""" 

from gurobipy import * 
import numpy as np 
import pandas as pd 

#read route availability from inputfile 
#RoutePass = pd.read_excel("inputfile.xlsx",index=0) 
RoutePass = pd.read_excel("R3.xlsx",sheet_name="Routes", index_col=0) 

#Define input parameters 

[Numflights,Numslots] = RoutePass.shape 
OriginalSched = [13,14,17] 
#OriginalSched = 
pd.read_excel("R3.xlsx",index=0,sheet_name="Original",usecols=[1]) 
#OriginalSched.values.tolist() 
SlotOriginal = np.zeros(Numflights) 
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#define original schedule for flights 
for (index,val) in enumerate(OriginalSched): 
    SlotOriginal[index] = val-1 
print(SlotOriginal) 

#create new model 
m = Model("mip1") 

#define variables 
y=m.addVars(Numflights,Numslots,vtype=GRB.BINARY,name="y") 

m.update() 
#define constraints 
#define constraints (1) 

for tidx in range(0,Numslots): 
    expr1 = LinExpr() 

for fidx in range(0,Numflights): 
        expr1 += y[fidx,tidx]
    m.addConstr(expr1,GRB.LESS_EQUAL,1) 
m.update() 
#define constraints(2) 
for fidx in range(0,Numflights): 
    expr2 = LinExpr() 

for tidx in range(0,Numslots): 
        expr2 += RoutePass.iloc[fidx,tidx]*y[fidx,tidx] 

m.addConstr(expr2==1) 

#define constraints (3) 
for fidx in range(0,Numflights): 

for tidx in range(0,Numslots): 
        if tidx <= OriginalSched[fidx]: 
            m.addConstr(y[fidx,tidx]==0) 

#define objective 
obj = 0 
for fidx in range(0,Numflights): 
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 for tidx in range(0,Numslots): 
        obj += 30*(tidx-SlotOriginal[fidx])*y[fidx,tidx] 

m.setObjective(obj,GRB.MINIMIZE) 
m.update() 
m.optimize() 
m.write("file.lp") 

#get results 
print('Objective function value:',m.objVal) 
#print variable values 
for v in m.getVars(): 

print(v.varname, v.x) 

B.4 FlightAssign.mod 

set Flights; 
set Counties; 

#parameters 
param Capacity{Flights}; #capacity for each flight 
param SamplePopulation{Counties}; #population of potential flyers in each county 
#param M; # upper bound on people assigned to flight 
#param M2; # lower bound on people assigned to flight 

#decision variables 
var x{Counties,Flights} integer ; # number of people from county assigned to a flight 
var z{Counties,Flights} binary;  #1 if people from county c assigned to a flight, 0 
otherwise 
var totalsched >=0; 

#objective function 
minimize objfun: #maximize assignments 

sum{c in Counties, f in Flights} z[c,f];    

#constraints 

#Do not assign more people from a county than is possible 

Multi‐Scale Models for Transporation Systems under Emergency 48

https://m.write("file.lp


 

               

 
 
  

 
  

 
  

 
 
  

 
 
  

 

 
 
 
 

 

   

 

subject to CountyCapacity {c in Counties}: 
sum{f in Flights} x[c,f] <= SamplePopulation[c]; 

#Do not assign more people to flight than there is seat capacity on the flight 
subject to FlightCapacity {f in Flights}: 

sum{c in Counties} x[c,f] <= Capacity[f]; 

#At least 50 % of capacity on the flight is used 
subject to minFlightCapacity {f in Flights}: 

sum{c in Counties} x[c,f] >= 0.5*Capacity[f]; 

#Determine upper bound on population assigned to flight 
subject to boundUpper {c in Counties, f in Flights}: 
x[c,f] <= 209*z[c,f]; 

#Determine upper bound on population assigned to flight 
subject to CountyAssignmentub {c in Counties, f in Flights}: 
x[c,f] >= 2*z[c,f]; 

#ensure flight has diversity 
subject to FlightDiversity {f in Flights}: 
sum{c in Counties}z[c,f] >= 3; 

#calculate total passengers scheduled 
subject to totalpassengers: 

sum{c in Counties, f in Flights} x[c,f] = totalsched; 

B.5 FlightAssign.mod 

#set declaration 
set Flights; # set of flights 
set Counties;    #set of counties 

#parameter declaration 
param T >=0; #time horizon or number of Slots 
param N;     # number of gates 
param pop{Counties,Flights}; # number of people from county C scheduled for flight 
f 
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param r{Counties,1..T}; #road passability constraints 

#variable declaration 
var y{Flights, 1..T} binary; # assignment of flights to slots 
var numpass{Flights,1..T} >=0; 
var numflyers{1..T} >=0; 

#model declaration 
minimize delaytime: 

sum{f in Flights, t in 1..T} t*y[f,t]; 

subject to maxflightassigned {t in 1..T-1}: 
sum{f in Flights} y[f,t] <= N; 

subject to requiredassign {f in Flights}: 
sum{t in 1..T} y[f,t] = 1; 

subject to roadpassability {f in Flights, t in 1..T}: 
sum {c in Counties}pop[c,f]*r[c,t] >= y[f,t]*0.5*sum{c in Counties}pop[c,f]; 

subject to numpasscons {t in 1..T, f in Flights}: 
sum{c in Counties}pop[c,f]*r[c,t] = numpass[f,t]; 

subject to numgood {t in 1..T}: 
sum{f in Flights}numpass[f,t]*y[f,t] = numflyers[t]; 
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	Figure

	EXECUTIVE SUMMARY 
	EXECUTIVE SUMMARY 
	Over the past decade, the frequency and intensity of natural disasters have increased, causing significant disruptions to transportation systems.  The disruptions to transportation systems directly affect humanitarian activities during a disaster and may cause cascading impacts on other infrastructures and associated industries. Therefore, quick restoration and recovery of transportation systems play an important role in humanitarian operations and community recovery. However, how to prepare for and respond
	In our CATM project, we searched and reviewed papers published from 2007-2017 that focus on air and road transportation system management and decision-making during disaster preparedness and response phases. From the published papers and government reports, we identified and classified emergency response actions and/or policies in air and road transportation systems. During a natural disaster, major emergency response activities in air transportation systems are flight cancellation and rescheduling, crew re
	To support some of these emergency response activities, we developed optimization models to address a flight rescheduling problem during a severe weather disruption and network optimization models for road restoration problems after a hurricane. These optimization models were integrated as a decision-making tool to support the restoration of air and road transportation systems after a natural disaster such as a hurricane. Meanwhile, we collected the data of North Carolina (NC) emergency response activities,
	To support some of these emergency response activities, we developed optimization models to address a flight rescheduling problem during a severe weather disruption and network optimization models for road restoration problems after a hurricane. These optimization models were integrated as a decision-making tool to support the restoration of air and road transportation systems after a natural disaster such as a hurricane. Meanwhile, we collected the data of North Carolina (NC) emergency response activities,
	Hurricane Matthew. The integrated tool can also support decision making of transportation system restoration by visualizing the damaged connections between counties, airports and humanitarian resource centers, and the road restoration schedule and flight schedules recovery plan. 

	Figure
	The optimization models and decision-making tools developed in this project will improve the effectiveness and efficiency of response activities in local and regional transportation systems during a natural disaster, such as a hurricane. Deploying effective response activities can improve the mobility of people and disaster relief during and after a natural disaster. The results of this project have been published as three peer-reviewed conference papers and presented as posters and oral presentations at na
	Figure

	DESCRIPTION OF PROBLEM 
	DESCRIPTION OF PROBLEM 
	Natural disasters, such as hurricanes, winter storms, and floods, usually cause significant disruptions to transportation systems. These disruptions directly affect humanitarian activities during a disaster and may cause cascading impacts on other infrastructures and associated industries. During Hurricane Matthew, for example, more than 600 roads in North Carolina (NC) were closed due to severe flooding caused by the hurricane, and some of them were closed for more than ten days [1]. The closures of southe
	How to prepare for and respond to a disruption in transportation systems is a complex and challenging decision incorporating a variety of factors, from system use to system preparation. To address the emergency response challenges in transportation systems, in this CATM project, we aimed to (1) develop decision-making models for emergency response activities in different transportation modes, and (2) to integrate these models as a decision-making tool to support response activities in multi-mode transportat
	 
	 
	 
	What are the possible emergency-response actions/policies in different transportation modes? 

	 
	 
	How can optimization models support decision making when planning for and responding to disruptions in transportation systems? 

	 
	 
	How can emergency response optimization models for different transportation modes be integrated into a decision-making tool to support emergency response activities in multi-mode transportation systems? 


	These research questions were investigated at two interdependent scales – at the local scale of individual transportation modes (e.g., air transportation and road transportation) and at a network level. 
	Figure

	METHODOLOGY AND RESULTS 
	METHODOLOGY AND RESULTS 
	In this CATM project, we conducted five studies addressing the restoration problems in air or road transportation systems after a natural disaster. Before we conducted these studies, we searched for papers published from 2007-2017 that focus on disaster management and decision making of air and road transportation systems during disaster preparedness and response phases. We found and reviewed about 50 relevant papers for road transportation and about 40 relevant papers for air transportation. From the publi
	Study 1 – Vulnerability Assessment of the Southeastern NC Highway Transportation System to a Hurricane 
	On average, a major hurricane affects North Carolina once in two years [5] and causes significant disruptions to NC transportation systems. During Hurricane Matthew, for example, more than 600 roads in North Carolina were closed due to severe flooding caused by associated storm surge and heavy rain [1]. The closures of southeastern NC roads caused delays and embargoes on cargo movements in southeastern North Carolina, and complicated emergency relief delivery in the affected area [2]. Therefore, it is imper
	Figure
	Figure 1: FHWA’s Climate Change and Extreme Weather Vulnerability Assessment Framework [6] 
	Figure 1 illustrates the FHWA’s vulnerability assessment framework used in the study. The framework was proposed by the USDOT Federal Highway Administration (FHWA) in 2012 for assessing transportation system vulnerability to climate change and extreme weather events [6]. The FHWA’s framework consists of three steps: (1) defining the scope of a project, (2) assessing vulnerability, and (3) integrating vulnerability into decision making.  
	Figure
	For Step 1 of the FHWA’s framework, we selected the assets used to assess the vulnerability of the southeastern NC transportation system and defined the metrics to evaluate the vulnerability of the selected assets to a hurricane. The southeastern NC highways that were closed due to Hurricane Matthew were selected as the assets of the transportation system of interest because of the importance of highways in a transportation system. Figure 2 shows the two interstate highways and the 15 US highways that were 
	Figure
	Figure 2: Number of Closure Days of NC Highways during Hurricane Matthew Table 1: Vulnerability Metrics and Corresponding Data Sources 
	Figure
	Description and Rationale Data Sources 
	Exposure Metrics 
	Observed peak 
	Observed peak 
	Observed peak 
	Observed peak wind speeds at a location can 
	NOAA storm 

	wind speed 
	wind speed 
	provide a proxy for how likely an asset at the 
	data for North 

	TR
	location was exposed to wind. 
	Carolina 

	Observed peak 
	Observed peak 
	Observed peak flood level at a location can provide 
	USGS Flood 

	flood level 
	flood level 
	the proxy for how likely an asset at the location was 
	Event Viewer 

	TR
	exposed to a flood caused by precipitation. 

	Observed total 
	Observed total 
	Observed total rainfall at a location can provide the 
	NOAA storm 

	rainfall 
	rainfall 
	proxy for how likely an asset at the location was 
	data for North 


	exposed to precipitation. Carolina Sensitivity Metrics 
	Past experience with wind 
	Past experience with wind 
	Past experience with wind 
	Past experience with wind speed for a specific event. This data implies that the assets which are affected by this level of wind speed are more likely vulnerable. 
	NC Department of Safety’s WebEOC 

	Past experience with flood level 
	Past experience with flood level 
	Past experience with flood level for a specific event. This data indicated that the assets which are 
	database 

	TR
	affected by this level of flood level are more likely vulnerable. 


	Adaptive Capacity Metrics 
	Average annual 
	Average annual 
	Average annual 
	AADT is the volume of vehicle traffic of a road for 
	NCDOT GIS 

	daily traffic 
	daily traffic 
	a year divided by 365 days. Roadways with higher 

	(AADT) 
	(AADT) 
	traffic volumes would affect more drivers/traffic 

	TR
	and cause a greater disruption if damaged. 


	For Step 2 of the FHWA’s framework, the data needed for the vulnerability assessment was collected from multiple sources and then used to analyze the vulnerability using the USDOT vulnerability assessment scoring tool (VAST) [7]. By searching for potential sources, we found data for our vulnerability study from the USGS Flood Event Viewer, NOAA storm data for North Carolina, North Carolina Department of Transportation (NCDOT) Geographical Information System (GIS) analysis and North Carolina Department of Sa
	Figure
	The collected data were first converted to vulnerability scores for individual assets using the VAST. The VAST is an Excel-based tool to calculate metric-based vulnerability scores in terms of the three vulnerability components (exposure, sensitivity, and adaptive capacity). The VAST vulnerability scores range from 1 to 4, 1 representing low vulnerability and 4 representing high vulnerability. Based on the scoring scales given for each metric, the VAST first converts observed values for an asset to its metr
	Table 2: Scoring Scales Used for the Exposure, Sensitivity and Adaptive Capacity Metrics 
	Exposure 
	Exposure 
	Exposure 
	Sensitivity 
	Adaptive 

	Vulnerability 
	Vulnerability 
	Peak wind 
	Peak flood 
	Total rainfall 
	Wind past 
	Flood level past 
	capacity 

	score 
	score 
	speed (mph) 
	level (ft) 
	(inch) 
	experience (mph) 
	experience (ft) 
	(AADT) 

	1 
	1 
	45 – 50.5 
	16.6 – 27.18 
	10 – 12 
	39 -73 
	2 – 10 
	300 – 12225 

	2 
	2 
	50.5 – 56 
	27.18 – 37.75 
	12 – 14 
	73 – 95 
	10 – 18 
	12225 – 24150 

	3 
	3 
	56 – 61.5 
	37.5 – 48.33 
	14 – 16 
	95 – 110 
	18 – 26 
	24150 – 36075 

	4 
	4 
	61.5 – 67 
	48.33 – 58.9 
	16 – 18 
	110 – 200 
	26 – 60 
	36075 – 48000 


	Figure 3 shows the vulnerability scores of all highways selected. A highway with higher vulnerability score is more vulnerable to a hurricane. The figure shows the variation in exposure, sensitivity and adaptive vulnerability scores which are caused by the varying exposure levels to wind and precipitation, and different traffic volumes. The comparison of the exposure vulnerability scores and the closure days of the selected highways reveals that the number of closure days is positively correlated with the e
	Figure 3 shows the vulnerability scores of all highways selected. A highway with higher vulnerability score is more vulnerable to a hurricane. The figure shows the variation in exposure, sensitivity and adaptive vulnerability scores which are caused by the varying exposure levels to wind and precipitation, and different traffic volumes. The comparison of the exposure vulnerability scores and the closure days of the selected highways reveals that the number of closure days is positively correlated with the e
	US-701, usually have high overall vulnerability scores because damages or disruptions of a highway with high traffic volume affect more commuters and business operations, and result in a higher adaptive capacity vulnerability scores. 

	Figure
	Figure 3: Vulnerability Scores for the Southeastern NC Highways [9] 
	Study 2 – Decision Making for Road Network Restoration after a Natural Disaster 
	Natural disasters, such as hurricanes and floods, usually damage or block roads and hence disrupt road transportation networks. Road network disruptions impede accessibility to disaster victims, medical facilities, and supply locations during the first few days after a disaster, and affect commuters’ travel and the transportation industry during the road recovery period. Due to the importance of road restoration after natural disasters, many studies in the literature have addressed the road restoration prob
	Natural disasters, such as hurricanes and floods, usually damage or block roads and hence disrupt road transportation networks. Road network disruptions impede accessibility to disaster victims, medical facilities, and supply locations during the first few days after a disaster, and affect commuters’ travel and the transportation industry during the road recovery period. Due to the importance of road restoration after natural disasters, many studies in the literature have addressed the road restoration prob
	are more critical for short term or long term road restoration after a hurricane, and (3) to investigate what factors may affect optimal road restoration schedules.  

	Figure
	In this study, we proposed an integrated decision-making approach, in which the short term road restoration (STRR) and long term road recovery (LTRR) problems are solved hierarchically. Figure 4 illustrates the optimization models used in the approach and the input and output for each model. For the STRR problem, a minimum spanning tree (MST) model is built to identify the critical roads to be restored to reconnect the road network with minimum restoration time. Then the maximum flow and resource allocation
	Figure
	Figure 4: An Integrated Decision-Making Approach for Road Restoration and Recovery  after a Natural Disaster 
	We tested the proposed integrated decision-making approach on the eastern North Carolina road transportation network affected by Hurricane Matthew. Figure 5 shows the 
	We tested the proposed integrated decision-making approach on the eastern North Carolina road transportation network affected by Hurricane Matthew. Figure 5 shows the 
	eastern North Carolina road transportation network, in which the nodes denote the counties, and the edges represent the roadways linking counties. This road network consists of 50 nodes and 118 links. In the network, solid lines represent undamaged links, whereas dash lines represent damaged links during Hurricane Matthew. In our study, a damaged link between two nodes is defined as the link with capacity that cannot meet the need of humanitarian logistics after a disaster. In addition, the nodes with red a

	Figure
	Figure
	Figure 5: Eastern North Carolina Road Transportation Network 
	In our study, we tested the proposed decision-making approach in the scenarios representing even and uneven distributions of damage. The even distribution of damage represents the flood damage scenarios caused by heavy rain during a hurricane. On the other hand, the uneven distribution of damage represents the damage variation ranging from high 
	In our study, we tested the proposed decision-making approach in the scenarios representing even and uneven distributions of damage. The even distribution of damage represents the flood damage scenarios caused by heavy rain during a hurricane. On the other hand, the uneven distribution of damage represents the damage variation ranging from high 
	for the coastal region to low for the inland region, which is usually caused by high-speed wind of a hurricane. The regions of edges depend on the distance of edges from the coast. In this study, edges within 60 miles from the coast are considered as coastal edges, edges between 61 to 120 miles from the coast as middle edges, and edges above 120 miles from the coast as inland edges. Figure 5 illustrates the three regions with different colors: blue for coastal edges, green for middle edges and orange for in

	Figure
	Nine scenarios are designed for the even and uneven damage distributions, respectively, by combining three levels of road damage percentage and three levels of road restoration workload distribution. A constant daily road restoration capacity of 1664 (unit×hours) is assumed for all scenarios in the numerical study, which is estimated based on 208 contractor crews available for road restoration at North Carolina mentioned in FMEA’s hurricane Florence report [32]. 
	For the nine scenarios of even damage distribution, the three levels of road damage percentage are 30%, 50% and 70%, which approximately correspond to the percentages of damaged roads by hurricane Irene (2011), Hurricane Matthew (2016) and Hurricane Florence (2018), respectively. For the restoration workload distribution, we estimated the middle-level workload (MWL) based on the daily restoration capacity and the damage scenario of hurricane Matthew, in which about 50% of the edges (67 out of 118 edges) wer
	For the nine scenarios of uneven damage distribution, one level of road damage percentage consists of three road damage percentages for the three regions (coastal, middle and inland) of roads. The three levels of road damage percentage for the even damage scenarios are assigned for middle edges. The levels of road damage percentage for coastal edges and inland edges increase and decrease by 10%, respectively. Thus, the three levels of road damage percentage for the uneven damage scenarios are (20%, 30%, 40%
	For the nine scenarios of uneven damage distribution, one level of road damage percentage consists of three road damage percentages for the three regions (coastal, middle and inland) of roads. The three levels of road damage percentage for the even damage scenarios are assigned for middle edges. The levels of road damage percentage for coastal edges and inland edges increase and decrease by 10%, respectively. Thus, the three levels of road damage percentage for the uneven damage scenarios are (20%, 30%, 40%
	60%) and (60%, 70%, 80%). In these scenarios, coastal edges are assigned the highest damage percentage as the roads in the coastal region are exposed to more severe wind. The damage percentage for inland edges decreases due to the decrease in its wind speed after a hurricane landfall. For the same reason, the mean values of the restoration workload distributions increase by 20% for coastal edges and decrease by 20% for inland edges.  

	Figure
	In our study, three cases were randomly generated for each scenario based on the road damage percentage and the road restoration workload distribution of the scenario, and then were solved using the integrated decision-making approach proposed. Figure 6 represents the numbers of damaged links to be restored for the uneven and even damage scenarios. Figure 6(a) shows the numbers of damaged links to be restored to connect all the demand node, i.e., restoring the connectivity of the network. Figure 6(b) illust
	Figure 7 represents the days required to connect the network and restore all damaged links for the uneven and even damage scenarios. Figure 7(a) shows the days required to connect the network as early as possible to aid humanitarian activities in the short term restoration period. Figure 7(b) illustrates the days required to restore the entire network in the long term recovery period. In both the short term and the long term, we assume that enough restoration resource and time for road restoration operation
	Figure 7 represents the days required to connect the network and restore all damaged links for the uneven and even damage scenarios. Figure 7(a) shows the days required to connect the network as early as possible to aid humanitarian activities in the short term restoration period. Figure 7(b) illustrates the days required to restore the entire network in the long term recovery period. In both the short term and the long term, we assume that enough restoration resource and time for road restoration operation
	distribution. In other words, regardless of the damage caused by wind gust or flood due to a hurricane, the best network recovery schedule depends on the amount of damaged road and damage severity caused by the disaster. 

	Figure
	Figure
	(a) Short Term Road Restoration (b) Long Term Road Recovery Figure 6: Number of Links Required to Reconnect and Restore the Damaged Network 
	Figure
	(a) Short Term Road Restoration (b) Long Term Road Recovery 
	Figure 7: Days Required to Reconnect and Restore the Damaged Network 
	Figure 8 represents the percentage of each edge’s occurrences in short term road restoration (STRR) schedules for both uneven and even damage distribution scenarios. The result shows that for both types of scenarios, the restoration schedule includes a similar group of edges in the STRR schedule. This indicates that some group of edges in the road network, 
	Figure 8 represents the percentage of each edge’s occurrences in short term road restoration (STRR) schedules for both uneven and even damage distribution scenarios. The result shows that for both types of scenarios, the restoration schedule includes a similar group of edges in the STRR schedule. This indicates that some group of edges in the road network, 
	e.g., edges (6,13) and (6,37), are essential due to the topology of the network. In other words, the edges (6,13) and (6,37) whenever damage, they must be scheduled to restore in the short term road restoration period to reconnect the road network. Further, these results provide the strategic location for prepositioning restoration resources close to the important edges depicted in Figure 8. 

	Figure
	Figure
	(a) For the Uneven Damage Scenarios                                (b) For the Even Damage Scenarios 
	Figure 8: Percentage of Edge Occurrences in short term road restoration schedules  
	Figures 9(a) and 9(b) represent the average ranking of edges in long term road recovery schedules for both uneven and even damage distribution scenarios, respectively. The results show that the average ranking of edges does not affect by the damage distribution. Also, the rank of the edges in the network is related to the traffic volume in terms of annual average daily traffic (AADT) and the restoration workload. In other words, edges with high rank are scheduled to restore early in order to minimize the af
	Figure
	(a) For the Uneven Damage Scenarios                               (b) For the Even Damage Scenarios 
	Figure 9: Average Ranking in Percentage of Edges in the Uneven and Even Damage Scenarios 
	In summary, we developed the three optimization models for an integrated decision-making approach that addresses the problems of short term road restoration and long term road recovery after a natural disaster. The approach and optimization models have been tested in the 18 road damage scenarios, which were designed by considering even or uneven damage distribution, road damage percentage and restoration workload. The findings revealed that the number of links required to reconnect and restore the damaged n
	Figure

	Study 3 – Visualizing the Impact of a Severe Weather Disruption to an Air Transportation Network 
	Study 3 – Visualizing the Impact of a Severe Weather Disruption to an Air Transportation Network 
	Air Transportation is most commonly controlled and monitored by a sophisticated, coordinated route management system known as a hub and spoke network model [33]. Passengers start at a hub (departure airport) and are transported along the spoke to a destination airport (arrival airport). A representation of the hub and spoke network at an airport hub is shown in Figure 10. 
	Figure
	Figure 10: Representation of Hub and Spoke Network 
	Figure 10: Representation of Hub and Spoke Network 


	The restoration of airline operations during a severe weather disruption involves the analysis and interpretation of large volumes of flight and weather data. Large datasets, or Big Data, are structured or unstructured datasets that are too large or complex to be analyzed by traditional data-processing applications. In Air Transportation, these large datasets typically contain pertinent airline and flight information based on time intervals [34]. 
	The principal goal of the visualizations analysis is to introduce a decision support tool to interpret and collate large volumes (Big Data) of time-dependent flight and weather data. The visualizations serve as a comprehensive interface for airline stakeholders to assist them with collating, viewing and comprehending the Big Data. Flight and weather data from Hurricane Matthew 2016 are used to generate the visualizations. 
	There are many prior research studies dedicated to visualizing Big Data. A literature review of the state-of-the-art articles related to Big Data for airline flights and weather conditions were performed. The articles were classified based on the type of Big Data 
	There are many prior research studies dedicated to visualizing Big Data. A literature review of the state-of-the-art articles related to Big Data for airline flights and weather conditions were performed. The articles were classified based on the type of Big Data 
	visualized in the article, the details of the data, the methodology used to create the image, the intended audience to interpret and receive the visualizations, and the decisions that audience must address. Table 3 summarizes the classification of the Big Data visualized in the related articles. 

	Figure
	Table 3: Classification of Big Data Visualized in the Related Literature 
	Type of Big Data Visualized 
	Type of Big Data Visualized 
	Type of Big Data Visualized 
	Data Details 
	Methodology 
	Intended Audience 
	Audience Decisions 

	Airlines (35%) 
	Airlines (35%) 
	Real‐time, time‐dependent flight and weather data 
	Statistical analysis using programming software 
	Pilots, air traffic controllers, airline stakeholders 
	Airline recovery 

	Hurricanes (35%) 
	Hurricanes (35%) 
	Time‐dependent weather data 
	Statistical analysis using programming software 
	Pilots, air traffic controllers, airline stakeholders, NASA 
	Airline recovery 

	General Big Data (17%) 
	General Big Data (17%) 
	Time‐dependent network data 
	Statistical analysis using programming software 
	Scientists, engineers 
	Disruption management 

	Severe Weather (13%) 
	Severe Weather (13%) 
	Time‐dependent weather data 
	Statistical analysis using programming software 
	Scientists, engineers 
	Airline recovery 


	The research uses two types of Big Data datasets, flight and weather data, obtained from four sources, The Official Aviation Guide (OAG), Weather Underground, the US Department of Transportation’s Bureau of Transportation Statistics National Aviation System (BTS NAS) and Iowa State University’s Environmental Mesonet. The data covers the timeframe from September 1, 2016, through October 31, 2016. It includes the landfall period (September 28, 2016 through October 9, 2016) for the severe weather disruption, H
	To inform the decisions that Air Transportation officials are faced with, we visualize specific flight and weather variables. The flight variables are a day, time and carrier for the scheduled flights and the number of cancellations. The time-dependent weather variables are visibility levels, wind speed and hurricane landfall path. The visualizations are interpreted for traffic flow (flow-in and flow-out), capacity constraints and connectivity to the hub to influence decisions regarding airline recovery fol
	Figure 11 shows the total flow of all airline carriers arriving and departing DCA, MCO, ORF and RDU between September 1, 2016 and October 31, 2016. The left side of Figure 7 illustrates the total traffic flow out of the hub and the right side of the figure displays 
	Figure 11 shows the total flow of all airline carriers arriving and departing DCA, MCO, ORF and RDU between September 1, 2016 and October 31, 2016. The left side of Figure 7 illustrates the total traffic flow out of the hub and the right side of the figure displays 
	the total traffic flow into the hub. These airport hubs are chosen because they are coastal airports, (MCO and ORF), and in-land airports, (DCA and RDU), that are in the path of Hurricane Matthew 2016. The effects of Hurricane Mathew are most significant at MCO which is visible by the noticeable break in the graph (shown in the circle), indicating that there were no outgoing or incoming flights during October 6-7, 2016. MCO closed on October 6-7, 2016 as Hurricane Matthew made landfall on the Florida coastl
	-
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	Figure
	Figure 11: Total Traffic Flow at DCA, MCO, ORF and RDU 
	Figure 11: Total Traffic Flow at DCA, MCO, ORF and RDU 


	Figure 12 also shows a comparison of the percent of arrivals at inland (DCA and RDU) and coastal (MCO and ORF) airport hubs. The graphs of the inland hubs show flights arrived on October 7, 2016. These airports may not have received the full potency of the hurricane weather conditions and could continue to allow flights to arrive. When Hurricane Matthew reached North Carolina (RDU), it was a Category 1 Hurricane that decreased in intensity to a Post Tropical Cyclone by the time it reached Washington DC (DCA
	Figure
	Figure 12: Traffic Flow In to DCA, MCO, ORF and RDU 
	Figure 12: Traffic Flow In to DCA, MCO, ORF and RDU 


	Figure 13 shows the cancelled flights scheduled to arrive at DCA, MCO, ORF and RDU during the period of study. There are negligible or zero cancelled arrivals at the four airport hubs during September 2016, indicating that there are no capacity constraints or flight route connectivity issues to consider. However, October 2016 shows a high concentration of cancellations between October 6-9, 2016. 
	Figure
	Figure 13: Cancelled Arrivals (Flow In) [35] 
	Figure 13: Cancelled Arrivals (Flow In) [35] 


	Figure
	The visualizations show that organizing the data to display the traffic flow at a hub and cancellations in the airport network, provides an enhanced understanding of the data, improves the understanding and clarity of the data and assists with recovery decisions to manage capacity constraints and traffic flow following a severe weather event. The visualizations and results are corroborated by interviews with Air transportation officials tasked with decision-making for recovery operations following a severe 
	Study 4 – A Deterministic Optimization Model of Flight Schedules Recovery 
	When unexpected disruptions to normal operations occur, Air transportation officials are faced with what is commonly known as the airline recovery problem [36]. The airline recovery problem is essentially the process of determining how to respond to an unexpected interruption to service or operations. Decision-makers must develop recovery actions for five basic components of air traffic management: Airport Operations, Aircraft Dispositioning, Flight Schedules, Crew Assignment and Passenger Itineraries [37].
	The objective of this research is to develop an optimization model for the recovery of Flight Schedules following a severe weather disruption. We conduct a state of the airline network assessment and define a discretized recovery window. We develop a mixed integer linear programming (MILP) model that generates new flight schedules, minimizes delays and circumvents a severe weather event caused by a hurricane. 
	The literature review is conducted comprehensively, for all components of the airline recovery problem, then filtered specifically for Flight Schedules recovery. The literature is categorized by the component of the airline recovery problem studied in the article. The related literature involving the recovery of Flight Schedules is analyzed by type of disruption, author’s approach to the problem, type of data used in the analysis and how the results will be used. Table 4 diagrams the classification of the F
	Figure
	Table 4: Classification of Flight Schedules Recovery Literature 
	Table
	TR
	Disruption 
	Approach 
	Data 
	Results For 

	Author 
	Author 
	Severe Weather 
	Capacity Constraints 
	Combined Disrupts 
	Case Study 
	Simulation 
	Optimization 
	Theoretical 
	Actual 
	Planning 
	Recovery 
	Both 

	Abdelghany, 2008 
	Abdelghany, 2008 
	X 
	X 
	X 
	X 

	Abdi, 2008 
	Abdi, 2008 
	X 
	X 
	X 
	X 

	Castro, 2010 
	Castro, 2010 
	X 
	X 
	X 
	X 

	Churchill, 2010 
	Churchill, 2010 
	X 
	X 
	X 
	X 

	Eggenberg, 2010 
	Eggenberg, 2010 
	X 
	X 
	X 
	X 

	Filar, 2007 
	Filar, 2007 
	X 
	X 
	X 
	X 

	Hu, 2017 
	Hu, 2017 
	X 
	X 
	X 
	X 

	Janic, 2015 
	Janic, 2015 
	X 
	X 
	X 
	X 

	Jozefowiez, 2012 
	Jozefowiez, 2012 
	X 
	X 
	X 
	X 

	Marla, 2017 
	Marla, 2017 
	X 
	X 
	X 
	X 

	McCrea, 2008 
	McCrea, 2008 
	X 
	X 
	X 
	X 

	Sun, 2011 
	Sun, 2011 
	X 
	X 
	X 
	X 

	Tu, 2008 
	Tu, 2008 
	X 
	X 
	X 
	X 

	Zhang, 2008 
	Zhang, 2008 
	X 
	X 
	X 
	X 

	Zhang, 2017 
	Zhang, 2017 
	X 
	X 
	X 
	X 

	Glass, Davis, Qu 2019 
	Glass, Davis, Qu 2019 
	X 
	X 
	X 
	X 


	This study extends the work of Study 3 and examines the impact of a severe weather event, i.e. hurricane, on flight schedules at a US hub airport. We consider a daily operational approach for the airline recovery problem by establishing a 24-hour recovery horizon and 30minute, discretized time slots for flight rescheduling. A state of the network assessment is conducted to determine whether the flight route between the hub and destination airport is safe to travel. We develop a deterministic mixed integer l
	-

	1.if.route.for.flight..is.safe.to .travel.in.time.slot.
	r
	ft
	 = 

	  (1) 
	0.............................................................. otherwise 
	f = original slot in which flight f is scheduled (2) 
	f = original slot in which flight f is scheduled (2) 
	os

	f = prior delay time for flight f (3) 
	pd


	Figure

	Decision Variables 
	Decision Variables 
	1.if.flight. is.assigned.to.time.slot.
	y
	ft
	 = 

	      (4) 
	0...............................................otherwise 
	Objective 
	f) * yft + pdf      (5) 
	30 * (t – os

	 ∈.  ∈.. 
	min 
	∑
	∑


	s.t. 
	s.t. 
	∑yft ≤ 1 ∀ t ∈ T       (6) yft ≤ rft ∀ f ∈ F       (7) ∑ yft = 1 ∀ f ∈ F       (8) yft ∈ [0,1] ∀ f ∈ F, ∀ t ∈ T      (9) 
	 ∈.. 
	 ∈..

	The set of flights, F, contains the flight information for 4 airport hubs for the period of study. The flight information used in this study is scheduled departure date, carrier name, flight number, departure airport, number of flight cancellations and number of seats on the carrier. The set of flight routes, R, contains the state of the network assessment which identifies when the route, ft, for a flight f is safe to travel in a time slot t. The set of time slots, T, contains the 30-minute intervals in whi
	r

	Equation (1) is the binary condition for whether the route for flight f is safe to travel ft. If Equation (1) equals 0, new flight schedules cannot be developed because the flight route for flight f is not safe to travel at time t. The original time slot, f, in which flight f is scheduled is shown in Equation (2). The prior delay time, f, for a flight f is shown in Equation (3). In the first iteration of the model the prior delay, f, is 0. However, if the first run generates schedules in slot number 35, the
	in time slot 
	t
	 and is represented by 
	r
	os
	pd
	pd
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	Figure
	The objective function (5) determines the total delay time across all rescheduled flights given that the time slots are in 30-minute intervals. The constraints of the model are defined in Equations (6 – 8).  Constraints (6) ensure at most one flight f is scheduled in a time slot t. Constraints (7) ensure that a flight is scheduled to a route that is safe to travel. Constraints (8) enforce that a flight is scheduled to one time slot. It should be noted that we include a dummy time slot for all flight routes 
	The model is developed to generate new flight schedules in 30-minute intervals for cancelled flights due to a severe weather event. It is coded using Python programming language and tested in a testing scenario. This scenario assumes one airline carrier (American Airlines), one-day schedules for three cancelled flights and uses flight data generated based on the recurring daily schedules of American Airlines carriers. The data contains the carrier number, proposed departure day and time, the number of seats
	Study 5 – Integrated Decision Making for the Restoration of Air and Road Transportation Systems after a Natural Disaster 
	Quick restoration and recovery of transportation systems play an important role in humanitarian operations and community recovery after a natural disaster. To support the restoration of transportation systems, we created a visual decision-making tool for the restoration of air and road transportation systems after a natural disaster and tested it in a case study using the impact data of Hurricane Matthew in North Carolina. Figure 14 illustrates the 
	Quick restoration and recovery of transportation systems play an important role in humanitarian operations and community recovery after a natural disaster. To support the restoration of transportation systems, we created a visual decision-making tool for the restoration of air and road transportation systems after a natural disaster and tested it in a case study using the impact data of Hurricane Matthew in North Carolina. Figure 14 illustrates the 
	recovery process of air and road transportation operations after a natural disaster and the role of the proposed visual decision-making tool in the recovery process. To facilitate effective decision making during a natural disaster, the decision-making tool proposed for multimodal transportation system restoration integrates the flight rescheduling models and the short-term highway restoration models developed in this CATM project.  

	Figure
	Figure
	Figure 14: Recovery Process of Air and Road Transportation Operations  after a Natural Disaster  
	Figure 14: Recovery Process of Air and Road Transportation Operations  after a Natural Disaster  


	The disruption of natural disasters to air transportation is mainly due to flights cancellation, and the disruption to road transportation is because of damaged or blocked roadways. In the decision-making tool, first, the flight rescheduling models summarize the numbers of passengers in the canceled flights who need to travel from each county to the airport and send the information to the short-term highway restoration models. After receiving this information, the highways restoration models take road resto
	The disruption of natural disasters to air transportation is mainly due to flights cancellation, and the disruption to road transportation is because of damaged or blocked roadways. In the decision-making tool, first, the flight rescheduling models summarize the numbers of passengers in the canceled flights who need to travel from each county to the airport and send the information to the short-term highway restoration models. After receiving this information, the highways restoration models take road resto
	making tool. After the initial iteration, the flight rescheduling models and the highway restoration models are iteratively solved until optimal solutions for flight rescheduling and road restoration converge. In each iteration, the flight rescheduling models reschedule the canceled flights by considering the airport condition for flights and the accessibility from each county to the airport. Then based on an optimal new schedule of canceled flights, the flight rescheduling models summarize the numbers of a

	Figure
	In our case study, we tested the decision-making tool for transportation system restoration using the impact data of Hurricane Matthew in North Carolina (NC), including the data of NC emergency response activities and road closures during Hurricane Matthew from WebEOC database [1], flights cancellation during Hurricane Matthew from OAG 
	Figure
	Figure 15: Road Restoration Sequence in the Eastern North Carolina  for the Hurricane Matthew Scenario 
	Figure 15: Road Restoration Sequence in the Eastern North Carolina  for the Hurricane Matthew Scenario 


	Figure
	Table 5: Index, Name, and Population of the Counties Affected by Hurricane Matthew  
	Node Index 
	Node Index 
	Node Index 
	County Name 
	Population 
	Node Index 
	County Name 
	Population 

	1 
	1 
	Anson 
	25,275 
	27 
	Lee 
	49,040 

	2 
	2 
	Beaufort 
	44,958 
	28 
	Lenoir 
	59,648 

	3 
	3 
	Bertie 
	19,773 
	29 
	Martin 
	25,593 

	4 
	4 
	Bladen 
	32,278 
	30 
	Montgomery 
	26,822 

	5 
	5 
	Brunswick 
	73,143 
	31 
	Moore 
	74,769 

	6 
	6 
	Camden 
	6,885 
	32 
	Nash 
	87,420 

	7 
	7 
	Carteret 
	59,383 
	33 
	New Hanover 
	160,307 

	8 
	8 
	Chatham 
	49,329 
	34 
	Northampton 
	22,086 

	9 
	9 
	Chowan 
	14,526 
	35 
	Onslow 
	150,355 

	10 
	10 
	Columbus 
	54,749 
	36 
	Pamlico 
	12,934 

	11 
	11 
	Craven 
	91,436 
	37 
	Pasquotank 
	34,897 

	12 
	12 
	Cumberland 
	302,963 
	38 
	Pender 
	41,082 

	13 
	13 
	Currituck 
	18,190 
	39 
	Perquimans 
	11,368 

	14 
	14 
	Dare 
	29,967 
	40 
	Pitt 
	133,798 

	15 
	15 
	Duplin 
	49,063 
	41 
	Richmond 
	46,564 

	16 
	16 
	Edgecombe 
	55,606 
	42 
	Robeson 
	123,339 

	17 
	17 
	Franklin 
	47,260 
	43 
	Sampson 
	60,161 

	18 
	18 
	Gates 
	10,516 
	44 
	Scotland 
	35,998 

	19 
	19 
	Greene 
	18,974 
	45 
	Tyrrell 
	4,149 

	20 
	20 
	Halifax 
	57,370 
	46 
	Wake 
	627,846 

	21 
	21 
	Harnett 
	91,025 
	47 
	Warren 
	19,972 

	22 
	22 
	Hertford 
	22,601 
	48 
	Washington 
	13,723 

	23 
	23 
	Hoke 
	33,646 
	49 
	Wayne 
	113,329 

	24 
	24 
	Hyde 
	5,826 
	50 
	Wilson 
	73,814 

	25 
	25 
	Johnston 
	121,965 
	51 
	RDU Airport 
	1,000 

	26 
	26 
	Jones 
	10,381 


	Aviation worldwide Ltd [38], and the NC county population from US census data 2010 [39]. Figure 15 shows the eastern NC road transportation network affected by Hurricane Matthew, in which the nodes denote the counties, and the edges represent the roadways linking counties. This road network consists of 51 nodes and 118 links. Node 51 represents the airport in the affected area, and node 46 indicates the location of road restoration resource. The nodes with green background indicate the counties from which s
	Figure
	Figure 15 also shows the optimal road restoration schedule to reconnect the 50 counties and the airport. The set of damaged links to be restored is highlighted in green in the graph, and the numbers associated with each highlighted link indicate the restoration sequence of these roads. Corresponding to the road restoration schedule, Table 6 shows the recovery time by which airline passengers can travel by road from a county to the airport. Figure 16 shows the flight rescheduling results. This figure reveals
	Table 6: Passengers and Restoration Time for the Path from Counties to the Airport  
	Node Index 
	Node Index 
	Node Index 
	County Name 
	Number of Passengers from the County to the Airport 
	Restoration time  (in Hours) 

	43 
	43 
	Sampson 
	428 
	0 

	2 
	2 
	Beaufort 
	120 
	8 

	14 
	14 
	Dare 
	206 
	8 

	20 
	20 
	Halifax 
	556 
	8 

	34 
	34 
	Northampton 
	174 
	8 

	36 
	36 
	Pamlico 
	112 
	8 

	12 
	12 
	Cumberland 
	1947 
	16 

	13 
	13 
	Currituck 
	127 
	28 

	23 
	23 
	Hoke 
	240 
	28 

	7 
	7 
	Carteret 
	636 
	52 
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	(a) Passengers Rescheduled (b) Flights Rescheduled Figure 16: Percentages of Passengers and Flights Rescheduled after the Hurricane 
	Figure
	In the decision-making tool for multimodal transportation system restoration was implemented using Python. The computational time of decision making for road restoration and flight schedules recovery in the case study was within 5 minutes. This tool can also visualize the damaged connections between counties, counties disconnected from airports and regional coordinate centers, and the road restoration schedule and flight schedules recovery. 
	Figure

	FINDINGS, CONCLUSIONS, RECOMMENDATIONS 
	FINDINGS, CONCLUSIONS, RECOMMENDATIONS 
	In our CATM project, we (1) assessed the vulnerability of the southeastern NC highways to a hurricane using the impact data of Hurricane Matthew; (2) investigated the patterns of flight cancellations and delays caused by a severe weather disruption using visualization; (3) developed and tested a decision-making approach for road restoration in the short and long terms after a natural disaster; (4) developed an optimization model for flight schedules recovery after a severe weather disruptions; (5) integrate
	Our visualization study has demonstrated that the Tableau software successfully visualized the flight and weather activity during the period of study, and it can be used to develop a dashboard that shows the real-time impact of severe weather disruption. Our results have shown that visualizations can be used to forecast and predict airport flow, flight cancellations and departure delays and that the total traffics before, during and after a hurricane disruption can provide insights and trends to help decisi
	The optimization models, approaches and tools developed in this project can support decision making for the restoration of air and road transportation systems after a natural disaster. These models, approaches or tools can estimate the amount of aggregate restoration resource required for a damaged road network after a natural disaster, identify an optimal set and order of damaged or blocked roads to quickly reconnect critical locations, generate an optimal plan to recover a damaged road network, and optimi
	Figure
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	APPENDIX A: Multi-Period Resource Allocation (MPRA) Model 
	APPENDIX A: Multi-Period Resource Allocation (MPRA) Model 
	In the study of the road network restoration after a natural disaster, we address the short term road restoration and long term road recovery problems after a natural disaster. In the short term road restoration problem, the critical roads are identified and their restoration sequence is decided to reconnect the damaged road network within the shortest time. In the long term road recovery (LTRR) problem, the critical roads have been restored and the road network is connected. The remaining damaged road must
	The LTRR problem is defined on a weighted undirected graph G = (V, E) representing the damaged road network. In the graph, nodes (V) represent critical locations, and edges (E) denote damaged and undamaged links among critical locations. Each edge is associated with two weights: restoration workload and annual average daily traffic (AADT). The restoration workload weight of a damaged edge represents the aggregated workload, in units of repair/clearance team times time, required to restore the damaged edge (
	For the LTRR problem, the road recovery period is divided into multiple time intervals. In this study, the LTRR problem is formulated as a MILP model, called the MPRA model, that allocates available aggregated restoration resource to the unrestored edges of the graph over the road recovery period. The objective of the MPRA problem is minimizing the affected AADT associated with edge, i.e., affected traffic volume on the road, as early as possible. From the disaster management respective, road usability can 
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	Table 7: Notation for the MPRA Model 
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	Table 7 displays the notation for the sets, indices, parameters, and decision variables used in the MPRA models. In the MPRA model, the objective function (10) minimizes the total affected AADT, i.e., the total number of vehicles that could traverse the damaged edges over the time intervals. Constraints (11) ensure that any restored edge can be traversed once it is restored. Constraints (12) track the cumulative amounts of restoration resource allocated to 
	Table 7 displays the notation for the sets, indices, parameters, and decision variables used in the MPRA models. In the MPRA model, the objective function (10) minimizes the total affected AADT, i.e., the total number of vehicles that could traverse the damaged edges over the time intervals. Constraints (11) ensure that any restored edge can be traversed once it is restored. Constraints (12) track the cumulative amounts of restoration resource allocated to 
	each damaged edge by the end of each time interval. Constraints (13) and (14) determine whether enough restoration resource has been allocated to each damaged edge to restore it by the end of each time interval. Constraints (15) ensure that the total amount of restoration resource allocated does not exceed the total available resource in each time interval. Constraints (16) and (17) are non-negativity and binary restrictions for decision variables.  
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	B.1 MST.py 
	B.1 MST.py 
	""" Created on Wed Jan 16 10:33:38 2019 @author: Sachin Mhatre """ 
	# A Python program for Prim's Minimum Spanning Tree (MST) algorithm.  # The program is for adjacency matrix representation of the graph  
	import sys # Library for INT_MAX  import numpy as np 
	class Graph(): 
	    def __init__(self, vertices):  self.V = vertices         self.graph = [[-1 for column in range(vertices)]   
	        for row in range(vertices)]  
	    # A utility function to print the constructed MST stored in parent[]  
	    def printMST(self, parent):  print ("Edge \tWeight")         for i in range(1,self.V):  
	            print (parent[i],"-",i,"\t",self.graph[i][ parent[i] ])  
	    # A utility function to find the vertex with       # minimum distance value, from the set of vertices       # not yet included in shortest path tree      def minKey(self, key, mstSet):  
	        # Initilaize min value          min = sys.maxsize  
	        for v in range(self.V): 
	            if key[v] < min and mstSet[v] == False:  min = key[v] min_index = v 
	Figure
	        return min_index
	    # Function to construct and print MST for a graph       # represented using adjacency matrix representation  def primMST(self): 
	        #Key values used to pick minimum weight edge in cut          key = [sys.maxsize] * self.V        parent = [None] * self.V # Array to store constructed MST          # Make key 0 so that this vertex is picked as first vertex          key[0] = 0          mstSet = [False] * self.V  
	        parent[0] = -1 # First node is always the root of  
	        for cout in range(self.V):              # Pick the minimum distance vertex from               # the set of vertices not yet processed.               # u is always equal to src in first iteration  u = self.minKey(key, mstSet) 
	            # Put the minimum distance vertex in               # the shortest path tree    mstSet[u] = True 
	            # Update dist value of the adjacent vertices               # of the picked vertex only if the current               # distance is greater than new distance and              # the vertex in not in the shotest path tree              for v in range(self.V):  
	# graph[u][v] is non zero only for adjacent vertices of m  # mstSet[v] is false for vertices not yet included in MST  # Update the key only if graph[u][v] is smaller than key[v]    if self.graph[u][v] >= 0 and mstSet[v] == False and key[v] > self.graph[u][v]:  
	           key[v] = self.graph[u][v]  parent[v] = u 
	Figure
	        self.printMST(parent) return parent 
	def STRREdges (numNodes, edgeFileName):         allEdges = np.genfromtxt(edgeFileName, dtype='int', delimiter=',') edgeList = allEdges.tolist() 
	g = Graph(numNodes) 
	for edge in edgeList:              g.graph[edge[0]-1][edge[1]-1]=edge[3]              g.graph[edge[1]-1][edge[0]-1]= edge[3] 
	mst = g.primMST()        for i in range(1,g.V):             if g.graph[i][mst[i]] > 0: for j in range(0,len(edgeList)):      if (i==(edgeList[j][0]-1) and mst[i]==(edgeList[j][1]-1)) or 
	(i==(edgeList[j][1]-1) and mst[i]==(edgeList[j][0]-1)): edgeList[j][2] = 1 break
	 return edgeList 

	B.2 STRR.py 
	B.2 STRR.py 
	""" Created on Sun Aug 25 18:41:40 2019 @author: Sachin Mhatre """ 
	from docplex.mp.model import Model from docplex.mp.context import Context 
	''' #Function to solve the STRR model Function of STRR (SourceNodes, DemandNodes, NodeWeights, Edgelist,  
	          DmgEdge, TimePeriods,AffectedPopulation, EdgeWorkload,            AirportNode = 51, TimeIntervals = 4,ResCapacity = 200) 
	Figure
	Parameters     SourceNodes - List of source node indices (Positive integers)      DemandNodes - List of demand node indices (Positive integers)     NodeWeight - Dictionary of node indices, names and weights (population)     Edgelist – List of undamaged edges and damaged edges to restore Dmg Edge – List of damaged edges to be restored     TimePeriods – List of time periods indices (positive integers starting 1)     AffectedPopulation – Population associated with each pair of source and demand 
	nodes in each time Period     ResCapacity – Constant restoration resources available     AirportNode – Node index for the airport     EdgeWorkload – List of workload to restore each edge      TimeInterval - Number of hours for each interval 
	Returns listRestorationSequence dictRoadResSequence dictResTime_County dictResAllocation 
	''' 
	def STRR (SourceNodes, DemandNodes, NodeWeights, Edgelist, DmgEdge,           TimePeriods,AffectedPopulation, EdgeWorkload,            AirportNode = 51, TimeIntervals = 4,ResCapacity = 200): 
	    mq= Model(name="STRR") 
	#Decision variables #flow from i to j     f = {(e[0],e[1],t) : mq.continuous_var(name = "f_e{0}_{1}_t{2}".format(e[0],e[1],t))        for e in Edgelist for t in TimePeriods} for e in Edgelist:         for t in TimePeriods:             f[(e[1],e[0],t)] = mq.continuous_var(name = "f_e{0}_{1}_t{2}".format(e[1],e[0],t)) 
	#path from demand to source node z = {(d,s,t) : mq.binary_var(name = "z_d{0}_s{1}_t{2}".format(d,s,t))      for s in SourceNodes for d in DemandNodes for t in TimePeriods} 
	#path from demand to source node z = {(d,s,t) : mq.binary_var(name = "z_d{0}_s{1}_t{2}".format(d,s,t))      for s in SourceNodes for d in DemandNodes for t in TimePeriods} 
	#gamma in the model     g = {(e,t) : mq.binary_var(name = "g_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t))      for e in DmgEdge for t in TimePeriods}  

	Figure
	# Y cumulative resource allocated YC = {(e,t) : mq.continuous_var(name = "YC_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t))      for e in DmgEdge for t in TimePeriods} 
	# small y in model     y = {(e,t) : mq.continuous_var(name = "y_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t)) for e in DmgEdge for t in TimePeriods} 
	#objective function     mq.maximize(mq.sum(AffectedPopulation.get((d,s,t),0)* z[d,s,t] for d in DemandNodes for s in SourceNodes for t in TimePeriods)) 
	#Constraints to guarantee no flow on any damaged edge        for e in DmgEdge:
	       for t in TimePeriods:            mq.add_constraint(100*g[e,t] >= f[e[0],e[1],t])            mq.add_constraint(100*g[e,t] >= f[e[1],e[0],t]) 
	           if t > 1:    mq.add_constraint(g[e,t] >= g[e,t-1])  
	#Constraints to detect any path from each resource node to each demand node #Flow balance constraints for each source node 
	    for s in SourceNodes: DNodes = set() for e in Edgelist: 
	if e[0] == s:  DNodes = DNodes.union({e[1]}) if e[1] == s:  DNodes = DNodes.union({e[0]})         for t in TimePeriods:              mq.add_constraint(mq.sum(z[d,s,t] for d in DemandNodes) 
	+ mq.sum(f[k,s,t] for k in DNodes) == mq.sum (f[s,l,t] for l in DNodes))  
	Figure
	#Flow balance constraints for demand node 
	for d in DemandNodes: DNodes = set() for e in Edgelist: 
	if e[0] == d:  DNodes = DNodes.union({e[1]}) if e[1] == d:                 DNodes = DNodes.union({e[0]})             for t in TimePeriods:             mq.add_constraint(mq.sum(f[k,d,t] for k in DNodes )         == mq.sum(z[d,s,t] for s in SourceNodes) + mq.sum(f[d,l,t] for l in DNodes)) 
	#workload for e in DmgEdge:
	        for t in TimePeriods:             # w1            mq.add_constraint(YC[e,t] >= EdgeWorkload.get(e,0) * g[e,t])             # w2            mq.add_constraint(EdgeWorkload.get(e,0) - YC[e,t] >= 1 - g[e,t]) #Clearance Cumulative if t == 1: 
	                mq.add_constraint(YC[e,t] == y[e,t])             else:   mq.add_constraint(YC[e,t] == YC[e,t-1] + y[e,t]) 
	    for t in TimePeriods:         mq.add_constraint(mq.sum(y[e,t] for e in DmgEdge) <= ResCapacity) 
	# Connectivity at the last time period 
	for d in DemandNodes: 
	        for s in SourceNodes:  t = TimePeriods[-1]             mq.add_constraint(z[d,s,t] == 1 ) 
	# Constraints of z(t) >= z(t-1) for d in DemandNodes: 
	Figure
	        for s in SourceNodes: for t in TimePeriods: if t == 1: continue       else:       mq.add_constraint(z[d,s,t] >= z[d,s,t-1] ) 
	#solution sol = mq.solve() if sol is None:
	        print('Not enough resource for road restoration in the given period') return None 
	# Solution Export 
	# Road restoration sequence based on gamma in the model dictRoadResSequence = {} listRestorationSequence = [] 
	# Resource allocation (smalll y in model) dictResAllocation = {} for e in DmgEdge:
	        for t in TimePeriods:             nameRoad = "g_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t)             var = int(mq.get_var_by_name(nameRoad).solution_value)            if (var > 0) and (dictRoadResSequence.get(e) == None): 
	 dictRoadResSequence[e] = t listRestorationSequence.append([t,e]) 
	            nameResource = "y_dmgedge{0}_{1}_t{2}".format(e[0],e[1],t) var = round(mq.get_var_by_name(nameResource).solution_value)   if var > 0: 
	dictResAllocation[(e,t)] = var 
	listRestorationSequence.sort() 
	dictResSchedule_County = {} dictResTime_County = {} s = AirportNode 
	Figure
	 for d in DemandNodes:         for key, value in NodeWeights.items(): 
	if int(key[0]) == d: d_name = key[1]                 break 
	        for t in TimePeriods:                 name = "z_d{0}_s{1}_t{2}".format(d,s,t)   var = int(mq.get_var_by_name(name).solution_value)     dictResSchedule_County[(key[0],t)] = var 
	    if (t == 1): 
	if (var == 1): ResTime = 0 preVar = 1 
	else: preVar = 0       else: 
	if (preVar != var):           ResTime = t*int(TimeIntervals) preVar = var 
	        dictResTime_County[d_name] = ResTime 
	    return listRestorationSequence, dictRoadResSequence, dictResTime_County, dictResAllocation 
	#Function for InitSTRR def initSTRR (TimePeriods, SourceNodes, DemandNodes, edgeList,  
	              CountynPopulation,dictPop_CountytoAirport): Edgelist = [] EdgeMST = [] EdgeWorkload ={} 
	for edge in edgeList:         EdgeWorkload[(edge[0],edge[1])] = edge[3] if edge[2]<2: 
	            Edgelist.append((edge[0],edge[1])) 
	Figure
	 if edge[2]==1:             EdgeMST.append((edge[0],edge[1])) 
	    AffectedPopulation = {}
	    for key, value in CountynPopulation.items():         for key1, value1 in dictPop_CountytoAirport.items(): 
	for t in TimePeriods:   AffectedPopulation[(int(key[0]),46,t)] = int(value) if key1 == key[1]: 
	     AffectedPopulation[(int(key[0]),51,t)] = int(value1) 
	# Call the STRR function     initSol = STRR(SourceNodes, DemandNodes, CountynPopulation, Edgelist,     EdgeMST, TimePeriods, AffectedPopulation, EdgeWorkload) 
	    return initSol 
	def iterSTRR(TimePeriods, SourceNodes, DemandNodes, edgeList,  
	             CountynPopulation, dictDailyPop_CountytoAirport,settings): Edgelist = [] EdgeMST = [] EdgeWorkload ={} 
	for edge in edgeList:         EdgeWorkload[(edge[0],edge[1])] = edge[3] if edge[2]<2: 
	            Edgelist.append((edge[0],edge[1])) if edge[2]==1:             EdgeMST.append((edge[0],edge[1])) 
	    AffectedPopulation = {}    numIntervals = int(settings['numTimePeriods']/settings['numDays']) 
	    for key, value in AffectedPopulation.items():         for t in TimePeriods: 
	Figure
	            AffectedPopulation[(int(key[0]),46,t)] = int(settings['weightRCC']*value)     
	        for key1, value1 in dictDailyPop_CountytoAirport.items(): if key1[0] == key[1]: 
	for t in range(numIntervals):        t1 = (key1[1]-1)*numIntervals+t+1       AffectedPopulation[(int(key[0]),51,t1)] = 
	int(settings['weightAirport']*value1) 
	    #call STRR     iterSol = STRR(SourceNodes, DemandNodes, CountynPopulation,     Edgelist,EdgeMST, TimePeriods,AffectedPopulation,EdgeWorkload) 
	    return iterSol 

	B.3 AIR.py 
	B.3 AIR.py 
	""" Created on Mon Aug  5 15:16:46 2019 @author: lbdavis """ 
	from gurobipy import * import numpy as np import pandas as pd 
	#read route availability from inputfile #RoutePass = pd.read_excel("inputfile.xlsx",index=0) RoutePass = pd.read_excel("R3.xlsx",sheet_name="Routes", index_col=0) 
	#Define input parameters 
	[Numflights,Numslots] = RoutePass.shape OriginalSched = [13,14,17] #OriginalSched = pd.read_excel("R3.xlsx",index=0,sheet_name="Original",usecols=[1]) #OriginalSched.values.tolist() SlotOriginal = np.zeros(Numflights) 
	Figure
	#define original schedule for flights for (index,val) in enumerate(OriginalSched):     SlotOriginal[index] = val-1 print(SlotOriginal) 
	#create new model m = Model("mip1") 
	#define variables y=m.addVars(Numflights,Numslots,vtype=GRB.BINARY,name="y") 
	m.update() #define constraints #define constraints (1) 
	for tidx in range(0,Numslots):     expr1 = LinExpr() for fidx in range(0,Numflights): 
	        expr1 += y[fidx,tidx]
	    m.addConstr(expr1,GRB.LESS_EQUAL,1) m.update() #define constraints(2) for fidx in range(0,Numflights): 
	    expr2 = LinExpr() for tidx in range(0,Numslots):         expr2 += RoutePass.iloc[fidx,tidx]*y[fidx,tidx] m.addConstr(expr2==1) 
	#define constraints (3) for fidx in range(0,Numflights): for tidx in range(0,Numslots):         if tidx <= OriginalSched[fidx]:             m.addConstr(y[fidx,tidx]==0) 
	#define objective obj = 0 for fidx in range(0,Numflights): 
	Figure
	 for tidx in range(0,Numslots):         obj += 30*(tidx-SlotOriginal[fidx])*y[fidx,tidx] 
	m.setObjective(obj,GRB.MINIMIZE) m.update() m.optimize() ") 
	m.write("file.lp

	#get results print('Objective function value:',m.objVal) #print variable values for v in m.getVars(): 
	print(v.varname, v.x) 

	B.4 FlightAssign.mod 
	B.4 FlightAssign.mod 
	set Flights; set Counties; 
	#parameters param Capacity{Flights}; #capacity for each flight param SamplePopulation{Counties}; #population of potential flyers in each county #param M; # upper bound on people assigned to flight #param M2; # lower bound on people assigned to flight 
	#decision variables var x{Counties,Flights} integer ; # number of people from county assigned to a flight var z{Counties,Flights} binary;  #1 if people from county c assigned to a flight, 0 otherwise var totalsched >=0; 
	#objective function minimize objfun: #maximize assignments sum{c in Counties, f in Flights} z[c,f];    
	#constraints 
	#Do not assign more people from a county than is possible 
	Figure
	subject to CountyCapacity {c in Counties}: sum{f in Flights} x[c,f] <= SamplePopulation[c]; 
	#Do not assign more people to flight than there is seat capacity on the flight subject to FlightCapacity {f in Flights}: sum{c in Counties} x[c,f] <= Capacity[f]; 
	#At least 50 % of capacity on the flight is used subject to minFlightCapacity {f in Flights}: sum{c in Counties} x[c,f] >= 0.5*Capacity[f]; 
	#Determine upper bound on population assigned to flight subject to boundUpper {c in Counties, f in Flights}: x[c,f] <= 209*z[c,f]; 
	#Determine upper bound on population assigned to flight subject to CountyAssignmentub {c in Counties, f in Flights}: x[c,f] >= 2*z[c,f]; 
	#ensure flight has diversity subject to FlightDiversity {f in Flights}: sum{c in Counties}z[c,f] >= 3; 
	#calculate total passengers scheduled subject to totalpassengers: sum{c in Counties, f in Flights} x[c,f] = totalsched; 
	B.5 FlightAssign.mod 
	B.5 FlightAssign.mod 
	B.5 FlightAssign.mod 

	#set declaration 
	#set declaration 

	set Flights; 
	set Flights; 
	# set of flights 

	set Counties; 
	set Counties; 
	   #set of counties 

	#parameter declaration 
	#parameter declaration 

	param T >=0; 
	param T >=0; 
	#time horizon or number of Slots 

	param N; 
	param N; 
	    # number of gates 


	param pop{Counties,Flights}; # number of people from county C scheduled for flight f 
	Figure
	param r{Counties,1..T}; #road passability constraints 
	#variable declaration var y{Flights, 1..T} binary; # assignment of flights to slots var numpass{Flights,1..T} >=0; var numflyers{1..T} >=0; 
	#model declaration minimize delaytime: sum{f in Flights, t in 1..T} t*y[f,t]; 
	subject to maxflightassigned {t in 1..T-1}: sum{f in Flights} y[f,t] <= N; 
	subject to requiredassign {f in Flights}: sum{t in 1..T} y[f,t] = 1; 
	subject to roadpassability {f in Flights, t in 1..T}: sum {c in Counties}pop[c,f]*r[c,t] >= y[f,t]*0.5*sum{c in Counties}pop[c,f]; 
	subject to numpasscons {t in 1..T, f in Flights}: sum{c in Counties}pop[c,f]*r[c,t] = numpass[f,t]; subject to numgood {t in 1..T}: sum{f in Flights}numpass[f,t]*y[f,t] = numflyers[t]; 
	Figure
	Figure
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